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experimental resolution)5, a number between 0 and M2s-2 can be
stored in a single crystal of molecular magnets with spin s. We note
that the experimental overhead required by the Grover search
algorithm involves only the control of logMN frequencies, which,
once available, can decode any number between 1 and N by means
of a single magnetic pulse. Our proposal for implementing Grover's
algorithm works not only for molecular magnets but for any
electron or nuclear spin system with non-equidistant energy
levels. Although such spin systems cannot be scaled to arbitrarily
large spin sÐthe larger a spin becomes, the faster it decoheres and
the more classical its behaviour will beÐwe can use such spin
systems of given s to great advantage in building dense and highly
ef®cient memory devices. M
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Given the practical importance of metallic plutonium, there is
considerable interest1±3 in understanding its fundamental proper-
ties. Plutonium undergoes a 25 per cent increase in volume4 when
transformed from its a-phase (which is stable below 400 K) to the
d-phase (stable at around 600 K), an effect that is crucial for issues
of long-term storage and disposal. It has long been suspected that
this unique property is a consequence of the special location of
plutonium in the periodic table, on the border between the light
and heavy actinidesÐhere, electron wave±particle duality (or
itinerant versus localized behaviour) is important5. This situation

has resisted previous theoretical treatment. Here we report an
electronic structure method, based on dynamical mean-®eld
theory, that enables interpolation between the band-like and
atomic-like behaviour of the electron. Our approach enables us
to study the phase diagram of plutonium, by providing access to
the energetics and one-electron spectra of strongly correlated
systems. We explain the origin of the volume expansion between
the a- and d-phases, predict the existence of a strong quasipar-
ticle peak near the Fermi level and give a new viewpoint on the
physics of plutonium, in which the a- and d-phases are on opposite
sides of the interaction-driven localization±delocalization tran-
sition.

Here we argue that the substantial volume expansion that occurs
when metallic plutonium changes from the a- to the d-phase is the
manifestation of the competition between localization (caused by
the electron±electron interactions) and delocalization (caused by
the kinetic energy) tendencies. The modern theoretical tool to
compute ground-state properties such as the volume of the solid
is density±functional theory (DFT) in its local density or general-
ized gradient approximations (LDA or GGA; for a review see ref. 6).
However, it fails here with unprecedented errors: the theoretical
volume of the d-phase is in error by 30%, and magnetic long-range
order not observed experimentally is predicted7±9. This illustrates
the inability of traditional electronic structure methods to predict
properties of strongly correlated systems.

The many-body theory of strongly interacting electrons on a
lattice is an alternative approach with a long history. Hubbard10 was
one of the ®rst to point out the importance, in the solid state, of
Coulomb correlations which occur inside atoms. Subsequently,
attempts to build theories which interpolate between the atom
and the solid were made. The many-body crystal wavefunction has
to reduce to many-body atomic wavefunctions as lattice spacing is
increased. Unfortunately, this limiting behaviour is missed in the
density-functional method.

Over the past ten years, a modern many-body technique which is
able to interpolate between band-like and atomic-like behaviour of
electrons, the dynamical mean-®eld theory (DMFT), has been
developed (for a review see ref. 11). It has resulted in a thorough
understanding of the Mott transition in hamiltonians with strong
repulsive interactions. It is of interest to consider if such a theory
could be implemented for realistic multiband solids with a variety of
details brought about by the crystallographic environment and the
constituents involvedÐand if it would have the predictive power
to explain such problems as the structural phase diagrams of
plutonium, its alloys and compounds. The development of this
electronic-structure method as an alternative to DFT would be an
important advance in the physics of d- and f-electron systems in
general, and in the problem of nuclear materials in particular. It is
therefore a pressing problem in the area of strongly correlated
electron physics11±13.

Here we discuss an implementation of DMFT which allows us to
incorporate the basic electronic structure of real materials into the
DMFTequations. This permits the calculation of the total energy of
a given compound. We show that this method leads us to the
explanation of the basic features of the phase diagram of plutonium.

How does this method include atomic physics? We illustrate this
point by looking at the atomic shell of an f-electron systemÐsuch as
plutoniumÐembedded in the solid-state environment. First, we
determine the spectrum of excitations for the shell, that is, a set of
many-body levels describing processes of removing and adding
electrons. In the simpli®ed case, when every f electron has roughly
the same kinetic energy ef and Coulomb repulsion energy U, the
total energy of the shell with n electrons is given by
En � ef n � Un�n 2 1�=2 and the excitation spectrum is given by
en � En�1 2 En � ef � Un. The constant U can be computed from
®rst principles. Second, we take into account that in the solid, these
many-body atomic states hybridize with each other and with the
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itinerant s, p and d electrons. Within the DMFTmethod, this process
is described by a frequency-dependent hybridization function,
¢(q), which is a measure of the ability of the f electron to delocalize.
This quantity is unknown at the outset, and needs to be determined
self-consistently. The entire problem is thus reduced to solving the
Ànderson impurity model'14 (AIM) for the given f shell. This gives
us the impurity Green's function Gf(q) and self-energy §(q) for f
electrons.

We now consider how the itinerant band aspects of the f electrons
are captured by this method. The bands are described by the
eigenvalues of the matrix one-electron hamiltonian H(k). In our
implementation, H(k) is obtained by constructing the LDA Kohn±
Sham hamiltonian. From this, we subtract the average of the
Coulomb energy of the f electrons as the latter is treated explicitly
later, using a tight-binding, linear muf®n-tin orbital (LMTO)
basis15. A signi®cant development in the present method is its ability
to handle realistic situations in which several bands are involved.

The important step brought by the dynamical mean-®eld
description is to require that the impurity Green's function Gf(q)
coincides with the full crystal Green's function Gc evaluated at the
impurity site (site-diagonal Gc). In practice, we begin with a guess
for the hybridization function, compute the impurity Green's
function and then, using H(k), the site-diagonal Gc. This is set
equal to a new impurity Gf(q), from which a new ¢(q) is
determined. This iterative procedure is repeated until self-consis-
tency in ¢(q) is achieved.

After the crystal Green's function is obtained, an updated charge
density is computed. The latter modi®es the one-electron hamilto-
nian H(k), which in turn modi®es the self-consistent solution
described above. This brings us to a second self-consistent loop,
the loop over charge density similar to the one in DFT. Incorporat-
ing such an external loop into the algorithm allows us to compute
from ®rst principles a central quantity of the material: its ground-
state total energy. As a consequence, a phase diagram of the solid of
interest can be studied by this method. By varying lattice spacing, we
can look for the total-energy minimum, and predict different
crystallographic con®gurations.

We gain several advantages by using the many-body, instead of
the density-functional, description of solids. First, our approach is
designed to reproduce both ground-state properties and excitation
spectra. A main shortcoming of DFT is thus overcome. Second, the
method gives direct access to ®nite temperatures via the use of
temperature Green's functions. Then in principle, phase transition
temperatures, both magnetic and crystallographic, should be acces-
sible. Last, the method works naturally in the local-moment
regimeÐwhen on a short timescale, magnetic moments exist on
atoms, but on long timescales, there is no net moment on the
average.

We now describe some details of the method that solves the AIM
for given hybridization ¢(q) and resulting self-energy §(q). The
latter is in general a 14 3 14 matrix for f electrons. For the
relativistic f level in cubic symmetry, it is reduced to 5 3 5 with 4
non-zero off-diagonal elements. Because the general AIM solution
is a formidable numerical problem, we make several simpli®cations.
First, off-diagonal elements are in general small and will be
neglected. We are therefore left with the 5f 5/2 state split into two
levels which are 2-fold (G7), and 4-fold (G8) degenerate, and with the
5f 7/2 state split into three levels which are 2-fold (G6), 2-fold (G7)
and 4-fold (G8) degenerate. Second, because in plutonium the
intermultiplet spin±orbit splitting is much larger than the intra-
multiplet crystal-®eld splitting (.5:1), we reduce the problem of
solving AIM for the levels separately by treating the 5f 5/2 G7 nd
G8 levels as one 6-fold degenerate level, and the 5f 7/2 G6, G7 and G8

levels as another 8-fold degenerate level.
To solve the AIM in the general multi-orbital case, we use an

interpolation scheme for its self-energy which is very accurate at
both small and large frequencies, inspired by the success of the

iterative perturbation theory11. At low frequencies, the exact value of
the self-energy and its slope is extracted from the Friedel sum rule
and from a slave-boson treatment16. At high frequencies, the self-
energy is computed using self-consistent determination of
moments17. The results of a smooth interpolation between these
limits were in good agreement with quantum Monte Carlo data in
the regimes where this comparison was possible (small degeneracy
and high temperature).

The total energy of the system is evaluated by correcting the LDA
total energyÐwhich contains all the electrons including the core
electronsÐfor the fact that it does not treat the f electrons correctly
(in the same spirit as the LDA+U method; for a review, see ref. 18).
We subtract from the LDA the average interaction energy of the f
electrons (double counting term) and the average kinetic energy of
the f electrons, and then add improved estimates of these quantities
using the solution of the self-consistent AIM. The interaction term
is evaluated using the Galitski±Migdal formula11, and the improved
f-electron kinetic energy within the DMFTmethod is extracted from
the hybridization of the AIM11. This gives a robust total energy
scheme for practical applications.

To study the phase diagram of plutonium, we implement this self-
consistent dynamical mean-®eld method. We include relativistic
spin±orbit coupling effects, which are generally important for
actinide compounds. The d-phase of plutonium has a face-centred
cubic (f.c.c.) structure with one atom per cell. We determine the
ground-state energy as a function of the atomic volume V for the
given lattice. Our theory needs a value of the effective Coulomb
interaction U between f electrons in Pu. Various estimates exist in
the literature. They indicate that the average interaction among f
electrons is around 4 eV (ref. 19).

To illustrate the importance of correlations in our theory, we
present results for values of U equal to 0 and 4 eV. First, the total
energy as a function of volume is computed for U � 0 (GGA curve),
which indicates a minimum at V =V d � 0:7, (V d is the experimental
volume of the d-phase) close to the volume of the a-phase, Fig. 1.
Certainly, we expect that correlations should be less important for
the compressed lattice in general, but there is no sign of the d-phase
in the U � 0 calculation. The total energy curve is very different for
U . 0. The details depend sensitively on the actual value of U. The
curve at U � 4 eV shows the possibility of a double minimum; it is
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Figure 1 Calculated total energy for plutonium as a function of volume using dynamical

mean-®eld theory (DMFT). The result of a density-functional GGA (generalized gradient

approximation) calculation is also shown for comparison. Calculations were performed for

the temperature 600 K, at which the d-phase is stable. U denotes average Coulomb

energy among f-electrons.
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actually realized for a slightly smaller value of U. We can directly
assign the small-volume feature to what would become the a-phase
if we allowed for monoclinic distortions and a volume-dependent
U, and assign the other feature to the d-phase. As the energies are so
similar, we may expect that as temperature decreases, the lattice will
undergo a phase transition from the d-phase to the a-phase with the
remarkable decrease of volume by 25%. Our ®rst-principles calcu-
lation contains the gist of the main features of the experimental
phase diagram of plutonium.

The double-well behaviour in the total energy curve is unprece-
dented in LDA- or GGA-based calculations, but is a natural
consequence of the proximity to a Mott transition. Indeed, recent
studies11 of model hamiltonian systems have shown that when the
f-orbital occupancy is an integer and the electron±electron
interaction is strong, two DMFT solutions, which differ in their
spectral distributions, can coexist. It is natural that allowing the
density to relax in these conditions can give rise to double minima,
as seen in Fig. 1. This theoretical result deserves more detailed
investigation, in the light of recent suggestions that the d-phase
might be metastable1.

As a second result, we report our calculated spectral density of
states for the d-phase. We predict the appearance of a strong
quasiparticle peak near the Fermi level. Recently, the d-phase
spectrum has been determined experimentally20; our calculations
are in accord with these measurements (Fig. 2). We note that LDA
is not able to resolve a quasiparticle peak, and the electronic
structure near the Fermi level falls into a deep minimum contrary
to experiment. Even the LDA+U theory21,22 fails to show the
Kondo-like peak near the Fermi level. The DMFT description
brings this feature into the spectrum, and the peak is quite narrow
owing to both small hopping integrals and strong Coulomb
interactions.

A simple physical explanation drawn from these calculations
suggests that in the d-phase the f-electron is slightly on the localized
side of the interaction-driven localization±delocalization transi-
tion, with a sharp and narrow Kondo-like peak and well-de®ned
upper and lower Hubbard bands. It therefore has the largest volume
across all phases as has been found by previous GGA+U

calculations21,22 that take into account Hubbard bands only. The
low-temperature a-phase is more metallic; that is, it has larger
spectral weight in the quasiparticle peak and smaller weight in the
Hubbard bands. It will therefore have a much smaller volume that
is eventually reproduced by LDA/GGA calculations which neglect
both Coulomb renormalizations of quasiparticles and atomic
multiplet structure. The delicate balance of the energies of the two
minima may be the key to understanding the anomalous properties
of Pu, such as the great sensitivity to small amounts of impurities
(which would raise the energy of the less-symmetric monoclinic
structure, thus stabilizing the d-phase to lower temperatures) and
the negative thermal expansion. We note, however, that the a-phase
is not a weakly correlated phase: it is just slightly on the delocalized
side of the localization±delocalization transition. This is a new view
of plutonium; traditionally, the a-phase is regarded as well under-
stood within LDA. However, the correlation viewpoint is consistent
with a series of anomalous transport properties in the a-phase that
are reminiscent of heavy-electron systems. For example, the resis-
tivity of a-Pu around room temperature is anomalously large,
temperature independent, and above the Mott limit23 (the maxi-
mum resistivity allowed to the conventional metal). The same is
true for the thermoelectric power24. M
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Figure 2 Comparison between calculated density of states for d-plutonium using

dynamical mean-®eld theory (DMFT; solid line) and recent photoemission experiments20

(circles). The result of a density-functional GGA calculation is also shown for comparison

(dotted line). Calculations are performed for the temperature 600 K at which the d-phase

is stable. EF denotes the position of the Fermi level.
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