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A self-consistent implementation of Hedin’s GW perturbation theory is introduced. This finite-temperature
method uses Hartree-Fock wave functions obtained with full potential linear augmented plane-wave method to
represent Green’s function. With our approach we are able to calculate total energy as a function of the lattice
parameter. Ground-state properties calculated for Na, Al, and Si compare well with experimental data.
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Density-functional theory �DFT� �Ref. 1� in its local-
density approximation �LDA� or generalized gradient ap-
proximation �GGA� is a widely used method to calculate
ground-state properties of solids. But this theory is not al-
ways good in situations where electronic correlations are es-
sential. The problem is then arising that existing variants of
DFT cannot be improved systematically �or at least it is very
difficult to accomplish that�. It is therefore very desirable to
have a method capable to deal with ground-state properties
and at the same time allowing their systematical improve-
ment. This flexibility is obviously present in methods based
on diagrammatic expansion and one of them, Hedin’s GW
approach, is becoming computationally accessible during last
years. However, while the GW method has become standard
for studying excitation spectra, the possibility of using it for
calculating total energies and other ground-state properties is
not well established. This question has been addressed only
in a few works. Holm and von Barth2 and Garcia-Gonzalez
and Godby3 performed self-consistent �SC� GW calculations
for the homogeneous electron gas �HEG� and concluded that
in spite of a bad electronic structure obtained in their SC
calculations the total energy was quite close to the result of a
quantum Monte Carlo �QMC� �Ref. 4� study. Stan et al.5,6

applied SC GW to calculate total energies of atoms and mol-
ecules. They conclude that GW calculations should be done
self-consistently in order to obtain physically meaningful and
unambiguous energy differences. Miyake et al.7 studied
ground-state properties of sodium and aluminum using
Galitskii-Migdal formula8 with a model spectral function.
Their equilibrium volumes and bulk modulus appeared to be
slightly overestimated as compared to the experiment, but
some improvement over LDA results was reported. Also us-
ing model self-energy, Sanchez-Friera and Godby9 success-
fully studied the structural properties of bulk silicon. Miyake
et al.10 applied the total-energy formula due to Luttinger and
Ward11 to the calculation of equilibrium lattice constants in
Na and Si. Their one-shot-type results appeared to be very
close to the experimental data. However, to our knowledge
fully self-consistent GW calculations of the total energy and
the ground-state properties for real solids have not yet been
carried out.

To address this question we have implemented a variant
of GW method which allows us to calculate total energies.
The key ingredients of our implementation are the following.
First, we use full potential linear augmented plane-wave
�FLAPW� method12 to find the solutions of the Hartree-Fock

�HF� equations which serve as a basis for the expansion of
one-electron Green’s function. Second, we have found it vi-
tal to use Matsubara’s time � mesh to calculate correlated
part of the self-energy. It appears that it is very difficult to
obtain comparable accuracy in total energy using self-
energies calculated in frequency domain. Third, our calcula-
tions are self-consistent.

In our implementation we use the Galitskii-Migdal for-
mula to calculate exchange-correlation part of total energy,
i.e., we convolute the Green’s function G���
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self-energy ����
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where � is a spin index; k denotes points in the Brillouin
zone, � and �� are band indices, and the self-energy is de-
fined by
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where ��
�k are Bloch states, Wij�q ;�� are screened Coulomb

interaction elements, and Mj
q are product basis functions.

Due to our implementation on top of the Hartree-Fock
method, we calculate exactly exchange part of self energy
coming from core-core, core-valence, and valence-valence
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FIG. 1. �Color online� Convergence of the product of correlated
part of self-energy and exchange part of Green’s function for Na
with respect to the number of Matsubara’s frequencies and to the
number of imaginary time slices.
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electrons. The effects of correlations in the deep enough core
are known to be small,13 and we neglect them.

The importance of calculating the self-energy using
imaginary time formalism instead of frequency summation is
evident from the fact that imaginary part of self-energy is
slowly convergent �� 1

� � function of frequency and this func-
tion is not known analytically which prevents direct summa-
tion. Figure 1 illustrates this point using Na as an example.
As it is seen 25–30 points on imaginary time mesh �we use
denser mesh at the boundaries of the interval 	0;	
� give
very good absolute convergence of the product of correlated
part of self-energy and exchange part of Green’s function.
On the other hand even more than 20 000 Matsubara’s fre-
quencies are not enough to converge. There is also quite
practical reason to avoid frequency summation: � algorithm
is just much faster because we only have to multiply Green’s
function with screened Coulomb interaction. In frequency
domain we have to perform a convolution, which is rather
time consuming.

As a test of our newly developed code we have applied it
to calculate the total energy for the homogeneous electron
gas. As we have already mentioned, this was already done

previously,2,3 but in those calculations zero temperature for-
malism was utilized. In Fig. 2 the result from our finite tem-
perature �300 K� approach is shown in comparison with the
accurate quantum Monte Carlo data obtained by Ceperly and
Alder.4 As it is seen, self-consistent-field �SCF� GW total
energies are in very good agreement with QMC simulations.

All our calculations for real solids have been performed
for temperature T=2000 K. For our LDA and GGA studies
we used the exchange-correlation functionals from Refs. 15
and 16, respectively. An important question is the conver-
gence of the GW results with respect to the calculational
parameters. We have discovered that the most critical of
them is the number of k points in Brillouin zone. Figure 3
shows the dependence of GW total energy on the k mesh
used �we use Monkhorst-Pack17 regular meshes of points�.
As it is seen as the division number increases from 4 to 8, the
energy changes by 0.04 Ry. For a comparison the same value
changes only by 0.005 Ry in GGA calculations. But as it is

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

10 100

E
ne

rg
y

(R
y)

Rs

QMC
GW
HF

FIG. 2. �Color online� Total energy of HEG with respect to Rs

obtained in HF and GW approximations. Comparison is made with
QMC results �Ref. 4�.
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FIG. 3. �Color online� GW total energy of Na as a function of
lattice parameter for different k-points samplings. Dot-dashed curve
represents the result for 8�8�8 mesh but with decreased number
of bands used �15 instead of 23 in other calculations�. Broken line
drawn from bottom to top shows the positions of minimums of the
curves.
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FIG. 4. �Color online� Total energy of Na as a function of lattice
parameter. Symbols are calculated values, and lines are fitted
curves. Arrow indicates the room-temperature experimental lattice
parameter �Ref. 14�.

FIG. 5. �Color online� DOS of Al calculated in GGA, HF. and
GW approximations. Chemical potential is placed at zero energy.
The arrow shows the experimental position of the valence-band
bottom.
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also seen from Fig. 3 the position of a minimum E�a� is
quickly becoming stable, which allows us to study structural
properties with GW approach. We also have discovered that
the number of bands representing the correlated part of
Green’s function has little effect on total energy �Fig. 3�. We
speculate that is the result of using Hartree-Fock basis set.

Figure 4 presents our calculated total energy versus lattice
parameter for Na, where we compare the results of the
LDA, GGA, HF, and GW approximations. For GW curve
we have perform two Birch-Murnaghan fittings for E�V�
with the following parameters: for 7.23
a
8.46�a.u.� :V0
=243.476 99�a.u.3� , B0=69.86�kbar� , B0�=2.529 75 and for
6.1
a
8.69�a.u.� :V0=241.230 30�a.u.3� , B0
=72.71�kbar� , B0�=3.248 05.

Table I contains the calculated ground-state properties for
all studied elements: Na, Al, and Si. As it is seen GW results
are quite good encouraging us to use this approach for
ground-state investigations.

As a by-product of our Rapid Communication we have
investigated the influence of the self-consistency on the ex-
citation spectra �at experimental equilibrium lattice param-
eter�. Despite it was already noticed long ago19 that the GW
approximation can be quite useful for calculating one-
electron spectra, there is still some ambiguity with respect to
the effect of self-consistency. Usually, GW calculations are
exceedingly demanding and only one-shot variant is used to
calculate bandwidths or band gaps. Calculated on top of
LDA or GGA such one-shot quasiparticle band structures

appeared to be in much better agreement with experimental
data when compared to the LDA ones.2,20–23 Later it was
shown that self-consistency within GW gives too large band
gaps for semiconductors and insulators.20,22,24 However this
question of self-consistency still remains as a few other
works aimed at self-consistent GW calculations used some
simplifications.20,22,23,25–29

We have performed SC GW calculations and compared
the results with the results from the one-shot GW calcula-
tions based on DFT self-consistent calculations. As example
of calculated density of states �DOS� for metals, we present
our calculated electronic structure of Al in Fig. 5. We are
especially concerned with the valence-band width for this
material. As it is seen, our non SC GW bandwidth for Al is
much closer to the LDA result and to the experimental
data30,31 than SC GW result which is about 10% too big.
Since Aluminum is a free-electron metal, we think that the
above result is similar and consistent with the results2,32 ob-
tained for the homogeneous electron gas. Based on the work
by Shirley32 and Takada33 we expect that higher-order vertex
corrections will bring the calculated bandwidth in closer
agreement with experiment.

In Table II we have collected the calculated fundamental
gaps for silicon obtained in earlier works along with our
results. Our band gap from non-SC GW calculation is quite
close to the results of others. However our band gap from SC
GW appears to be a bit wider than it is usually obtained. We
would stress however that neither of previous calculations

TABLE I. Equilibrium lattice parameter a0�a.u.� and bulk modulus B0�GPa� of Al, Na, and Si compared
to room-temperature experimental data �Refs. 14 and 18�. The results correspond to Brillouin-zone meshes
8�8�8 �Na and Al� and 5�5�5 �Si�.

Na Al Si

a0 B0 a0 B0 a0 B0

LDA 7.53 87 7.585 82.5 10.01 91.2

GGA 7.83 71.5 7.72 73.3 10.14 93.5

HF 8.62 50 7.82 82.5 10.34 97.0

GW 7.87 69.9 7.64 86.5 10.17 100.7

Expt. 7.96 68.1 7.65 72.16 10.26 99

TABLE II. Band gap �energies in eV� for Si. The values in round brackets were obtained with SC in
eigenvalues only. Experimental band gap is 1.17 eV.

Ref. 20 Ref. 26 Ref. 28 Ref. 23 Ref. 22 Ref. 24 Present work

LDA 0.53 0.52 0.46 0.51 0.46

GGA 0.54

HF 6.27

GLDAWLDA 1.34 0.85 0.86 0.98 1.14 0.86

GHFWHF 2.69

GCOHSEXWCOHSEX 1.56

GWLDA 1.28�1.20�
QPscGW 1.25�1.14� 1.47 1.41

GW 1.91 1.03 1.10 1.55
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are approximation free and that partially SC results obtained
in the works22–24 also show a trend in increasing the band
gap. In this respect it is important to notice that approximate
vertex correction24 reduces band gaps, partially cancelling
the effect of self-consistency. We hope to get more answers
to this question in the nearest future.

In summary, we have presented a self-consistent realiza-
tion of the GW method and its performance for evaluating
total energies and ground-state properties of solids. Based on
our case study for several simple systems �Na, Al, and Si� we
conclude that the GW approach delivers the accuracy in pre-
dicting total energy vs volume relations comparable with the
state-of-the-art GGA-type calculations of density-functional

theory. Obviously this success can be understood as a result
of a � derivability of the GW total-energy functional.34 Our
results for the electronic structure of the above mentioned
materials are in agreement with the earlier works, but in
general we should conclude that some deterioration in calcu-
lated bandwidths and band gaps is seen when we are trying
to do the self-consistency. In this respect our conclusion is
the same as the one by Holm and Barth found for homoge-
neous electron gas:2 the self-consistency within GW im-
proves total energies but not one-electron spectra.

This work was supported by NSF Grants No. DMR-
0606498, No. DMR-0606096, No. DMR-0528969, and No.
DMR-0906943.
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