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We constructed computer-based simulations of the lattice dynamical proper-
ties of plutonium using an electronic structure method, which incorporates
correlation effects among the f-shell electrons and calculates phonon spectra
at arbitrary wavelengths. Our predicted spectrum for the face-centered cubic
� phase agrees well with experiments in the elastic limit and explains unusually
large shear anisotropy of thismaterial. The spectrumof the body-centered cubic
phase shows an instability at zero temperature over a broad region of the wave
vectors, indicating that this phase is highly anharmonic and can be stabilized
at high temperatures by its phonon entropy.

Plutonium (Pu) is a material with very unusu-
al solid-state properties. Despite its scientific
and technological importance, many of its
key properties, such as the spectrum of lattice
vibrations, remain uninvestigated. It has not
been possible to measure that spectrum ex-
perimentally because of Pu’s extreme toxicity
and radioactivity. It has not been possible to
compute the spectrum theoretically, because
Pu is strongly correlated, and the traditional
electronic structure methods fail to describe it
even qualitatively. These studies are, howev-
er, essential to be able to address the factors
that govern the lattice stability of Pu, an issue
that is important for Pu’s storage and disposal
over long time scales.

Pu has six crystallographic allotropes with
puzzling volume variations among them (1).
Starting from the low-temperature � structure
with 16 atoms in the elementary cell, it under-
goes a series of phase transitions ending in
relatively simple face-centered cubic (fcc) (�)
and body-centered cubic (bcc) (ε) phases at
temperatures greater than 500 K. The 25% vol-
ume increase during the transition from � to � is
followed by a volume contraction upon further
heating (2) through the �-ε transition, occurring
by way of an intermediate body center tetrago-
nal �� phase, which exists in a very narrow
temperature interval. It is the unusual behavior
of both the electronic and lattice degrees of
freedom that determines the rich phase diagram
of Pu.

The experimental information about the
lattice dynamical properties of this element is

very limited. Pu has relatively soft elastic
constants and a Debye temperature near 100
K (3). Using this information, phenomeno-
logical studies of the thermodynamics of Pu
have been carried out (4). However, the role
phonons play in the thermodynamics of Pu is
unclear because of the lack of appropriate
theoretical and experimental tools to study its
lattice-dynamical properties. We address this
issue based on a new approach that is capable
of microscopically calculating phonons in
strongly correlated systems.

Our method is based on a recently devel-
oped (5) electronic structure algorithm,
which allows us to include dynamical self-
energy effects in calculating total energies
and spectra of materials with correlated elec-
trons. Its foundation is provided by the dy-
namical mean field theory (DMFT) (6),
which treats systems with competing local-
ization and delocalization tendencies of the
electrons, where such methods as the density
functional theory (7) in its local density ap-
proximation (LDA) or generalized gradient
approximations (GGAs) have limited appli-
cability. For example, within the LDA, the
theoretical volumes of � Pu and ε Pu are 30%
too small, the bulk modulus is one order of
magnitude too large, and long-range magnet-
ic order is predicted that is not experimentally
observed (8–12). Many of these difficulties
have been corrected by using DMFT-based
calculations (5).

The approach we used to compute the pho-
non spectrum of strongly correlated systems
combines DMFT and linear response theory. It
can be used to study the vibrations that involve
arbitrary wave vectors of atomic displacements
(13). A perturbative method with respect to
small movements of atoms from their equilib-
rium positions is used to evaluate changes in the
electronic charge densities, potentials, local
Green functions, and self-energies caused by

lattice vibrations. The dynamical matrix is
evaluated as the second-order derivative of
the expression for the total energy within
DMFT (14). This provides important infor-
mation about how electronic correlations af-
fect the lattice vibrations.

Why are lattice dynamics studies required
for understanding the phases of Pu? Here, the
f-shell electrons are close to the Mott transi-
tion (15). The compressibility at a Mott tran-
sition end point diverges (16), which suggests
anomalous elastic properties in its vicinity. In
isostructural phase transitions such as the �-�
transition in cerium (17, 18), the entropy
changes associated with the lattice deforma-
tions can be safely neglected. In Pu, however,
these entropy changes can be large.

Because Pu does not show long-range mag-
netic order, magnetic moments on Pu atoms can
exist only locally. Therefore, only dynamical
self-energy effects can describe the notion of
the disordered local moments. They can be
treated using the DMFT on the level of the
so-called Hubbard I approximation (19) for the
Anderson impurity model (20), which describes
the Pu’s paramagnetic state.

We calculated total energies of fcc and
bcc structures of Pu as a function of volume
using a self-consistent dynamical mean field
method. We solved the impurity model with-
in various schemes ranging from simple Har-
tree-Fock–like magnetically ordered LDA�U
(where U is the total energy) (21, 22) to paramag-
netic Hubbard-I and more sophisticated iterative
perturbation theory–based interpolation methods
(5, 6). We used U � 4 eV in our simulations as
approximately given by the atomic spectral
data (23), constrained density functional
studies (24), and our previous work (5, 21).
All techniques gave us a good agreement in
predicting the equilibrium volumes for � Pu
and ε Pu: V� was obtained to be 15.9 cm3/
mol, which is only 6% larger than the exper-
iment in (2), and the ε-phase volume is pre-
dicted to be 3% smaller than V�, in accor-
dance with the experiment in (2). The emerg-
ing physical picture indicates an ε phase that
has slightly more itinerant electrons than the
� phase. Why then does the more itinerant
phase, with its smaller volume, become fa-
vorable at higher temperatures? The answer
lies in the spectrum of vibrations of these two
phases.

We calculated the phonon spectra in � and
ε Pu by using the linear response technique
(13, 25). Self-energy effects in the calculation
of the dynamical matrix were included, using
the Hubbard-I approximation (19). In the cal-
culated frequencies, as a function of wave
vector along high-symmetry directions in the
Brillouin zone for the � phase (Fig. 1), we
saw a considerable softening of the transverse
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phonons around the L point, indicating that
the � phase may be close to an instability with
a doubling of the unit cell. Another anomaly
is seen for the transverse acoustic mode along
(011), which is connected to the nonlinear
behavior of the lowest branch at small q
values. Overall, the phonon frequencies are
positive, showing the internal stability of the
positions of the nuclear coordinates in � Pu.

Using our calculated dispersion relations
�(q), we extracted the elastic constants of � Pu.
For a cubic crystal, these are reduced to three
independent parameters: C11, C44, and C12,
which can be found from the estimates of the
corresponding sound velocities d�/dq along
(100) and (110). The relationships for the lon-
gitudinal and the transverse sound along (100)
are Vl � (C11/�)1/2, Vt � (C44/�)1/2, where � is
the density of the material. C12, as well as
another frequently used constant, C�, involve
combinations of C11, C44, and the sound veloc-
ities along (110). We compared the results of
our calculations with the experimental data in
(26) (Table 1).

We saw several unusual features in the elas-
tic behavior. First, C11 was very close to C44,
which gave nearly coinciding longitudinal and
transverse acoustic phonons along (001). A
similar conclusion can be drawn from Fig. 1, in
which two phonon branches along this direction
are nearly degenerate at small q values. In
ordinary metals, the C11:C44 ratio is often much
larger than 1. Second, the deviation from the
Cauchy relation, C44 � C12, which measures
the importance of the angular dependence in
atomic forces as compared to the central force
description, was very small. Third, the distor-
tion described by C� � (C11 – C12)/2 is very
soft, nearly like a liquid, which highlights a

huge anisotropy in elastic properties of � Pu
along different directions. C� measures the ri-
gidity against the volume-conserving tetragonal
deformation. This is in fact the deformation
from fcc (�) toward a bcc (ε) lattice along a path
known as the Bain path. Previous (10) LDA�U
and our Hubbard-I–based studies show that the
total energy difference between the � and ε
phases is quite small and by order of magnitude
is close to 1000 K. It is therefore reasonable to
expect soft behavior along the Bain path. This
can also shed light on the negative volume
thermal expansion, which is another puzzle in �
Pu. Because of small energy variation along the
Bain path, the fcc lattice can fluctuate toward
the bcc structure, which has a lower volume.

The results in Table 1 agree well with the
measured data (26), which indicates that our
method of determining the lattice dynamics
in this strongly correlated metal is quite ac-
curate. The LDA�U–based calculations that
assume the existence of long-range magnetic
order also give the elastic constants in much
better agreement with experiments than LDA
alone, although residual discrepancies on the
order of 50% remain (10). The present result
shows a substantial improvement, mainly be-
cause of nearly coinciding longitudinal and
transverse sounds along (001), in accordance
with the measurements.

We now turn to the description of our
results for the phonon dispersions of ε Pu
(Fig. 2). In the ε phase, we find several modes
that are totally unstable at zero temperature
(T ). First, the transverse phonon branch
along (011) with the polarization vector [0, 1,
–1] is unstable for all values of q. Second, the

transverse branch along (011) with the polar-
ization vector [1, 0, 0] is unstable at large
values of q. We also noticed a large, nearly
unstable softening of both longitudinal and
transverse phonon modes near the H point.
This is very different from the internally sta-
ble dynamics of the Pu nuclei in the � phase.
How can we understand the mere existence of
ε Pu if our T � 0 calculations predict it to be
unstable? The key lies in anharmonicity and
finite temperature phonon entropy.

Applying the frozen phonon method to the
most unstable anharmonic mode at [0, 	, 	],
we obtain a double-well potential, as shown in
the inset of Fig. 2. The depth of the double well
is about 1500 K, which is comparable to the
temperatures 750 to 900 K, at which the ε phase
is found to be stable. The vibrations in this
phase are extremely anharmonic and involve
large nuclei excursions from their equilibrium
positions. This results in the soft phonon spec-
trum, which is only stable at high temperatures.
The latter conclusion is also confirmed by the
analysis of the thermodynamics of Pu (4), from
which the Debye frequency for the ε phase is
extracted to be only 63 K as compared with the
corresponding value of 92 K for the � phase. A
slightly higher value of 110 K has recently been
obtained (27) for � Pu by the extended x-ray
absorption fine structure technique.

We are now ready to shed new light on the
thermodynamics of the �-to-ε phase transi-
tion, stressing the importance of the phonon
entropy. The free energy difference 
F �
Fε(T ) – F�(T ) between these phases is de-
scribed by both lattice and electronic degrees
of freedom and includes both U and the
entropy (TS) terms: F � U – TS. Unfortu-
nately, accurately evaluating each of these
contributions is not a straightforward task.
For the phonon part, even for weakly corre-
lated materials, extreme anharmonic situa-
tions pose substantial computational and con-
ceptual challenges (28). Accurate evaluation
of electronic entropies is another problem. In
spite of these difficulties, several conclusions
are very robust. Our total energy Hubbard-I–
based calculations place the smaller volume ε
phase higher in energy than � by 700 K. We
used the method of (28), which decouples
different modes in q space and interpolates
the double wells as functions of q, to demon-
strate that the anharmonic terms in the pho-
non free energy favor ε over � by an amount
approximately equal to 1000 K. This magni-
tude is sufficient to compensate for the elec-
tronic energy loss in going from � to the
slightly smaller volume ε phase.

Thus, we obtain a new insight into the
volume contraction between � and ε phases
that Pu undergoes upon heating. Both high-
temperature phases are strongly correlated
with a very similar electronic structure; ε has
a slightly higher electronic energy and slight-
ly more itinerant electronic f states than �.

Fig. 1. Calculated phonon dispersion relations
for � Pu using the dynamical mean field linear
response method. � � (0, 0, 0) 2	/a; X � (0, 0,
1) 2	/a; K � (0, 3⁄4, 3⁄4) 2	/a; L � (1⁄2, 1⁄2, 1⁄2)
2	/a, where a is the lattice constant for �-Pu.

Fig. 2. Calculated phonon dispersion relations for
ε Pu using the dynamical mean field linear re-
sponse method. The inset shows total energy (K)
as a function of distortion (in units of lattice
constant) for the most unstable transverse branch
at the N point N � (0, 1⁄2, 1⁄2) 2	/a; H�(0, 0, 1)
2	/a, where a is the lattice constant for �-Pu.

Table 1. Comparison between calculated and ex-
perimental (26) elastic constants in � Pu.

C11 (GPa) C44 (GPa) C12 (GPa) C� (GPa)

Theory 34.56 33.03 26.81 3.88
Experiment 36.28 33.59 26.73 4.78
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This results in a lower volume. The differ-
ence between the two phases lies in the pho-
non dynamics. Although the phonons in � Pu
are fairly harmonic, our calculation reveals
substantial instability in several modes of ε
Pu. This anharmonicity results in a much
higher phonon entropy, which in turn stabi-
lizes the ε-Pu phase at high temperatures.
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Microfluidic Memory and Control
Devices

Alex Groisman,* Markus Enzelberger, Stephen R. Quake†

We demonstrate microscopic fluidic control and memory elements through the
use of an aqueous viscoelastic polymer solution as a working fluid. By exploiting
the fluid’s non-Newtonian rheological properties, we were able to demonstrate
both a flux stabilizer and a bistable flip-flopmemory. These circuit elements are
analogous to their solid-state electronic counterparts and could be used as
components of control systems for integrated microfluidic devices. Such minia-
turized fluidic circuits are insensitive to electromagnetic interference and may
also find medical applications for implanted drug-delivery devices.

Fluidics, the construction of fluidic devices sim-
ilar to electronic circuits, was an active field of
research technology in the 1960s and early
1970s. Fluidic circuits were an alternative to
vacuum tubes and solid-state electronics (1, 2),
and advanced fluidic devices such as oscillators,
flip-flops, amplifiers, and logic gates were built
and integrated into sophisticated control systems
(1, 2). Fluidic circuits ultimately lost the com-
petition with semiconductor electronics in part
because they could not be easily miniaturized,
placing severe limits on their size and ultimate
complexity. Miniaturization was not feasible
because the devices are based on nonlinear
inertial flow phenomena at high Reynolds
numbers, Re (3). When the size is reduced,
achieving sufficiently large Re to generate
these nonlinearities requires increasingly high

driving pressures and becomes impractical at
the submillimeter scale.

With the advent of miniaturized plumbing
and other microfluidic technologies, there is
an increased need for logic and control sys-
tems to operate such devices without the use
of external electronics or interfaces. Al-
though there are some examples showing
how complexity and nonlinearity can be in-
troduced into microfluidic devices through
the use of multiphase flows (4) or chemically
responsive materials (5), few logic, memory,
or control elements have been demonstrated.
Here, we show that major nonlinear flow
effects can be achieved in microfluidic devic-
es with a single fluid and no moving parts.
We demonstrate two microscale nonlinear
fluidic devices that can operate at arbitrarily
low Re: a flux stabilizer, which is analogous
to an electronic constant-current source, and a
bistable flip-flop, which is analogous to a
digital flip-flop memory.

The nonlinearity required for the opera-
tion of these devices derives from the use of
a working fluid with nonlinear mechanical
properties: a viscoelastic polymer solution

(6). The elastic properties of solutions of
flexible polymers can lead to many interest-
ing nonlinear phenomena, including purely
elastic flow instabilities (7) and elastic turbu-
lence (8). The strength of nonlinear elastic
effects depends on the Weissenberg number
(5) Wi � ƒV, where ƒV is the rate of
deformation in the flow and  is the polymer
relaxation time. These elastic effects are es-
sentially independent of Re and should not
diminish when the device is miniaturized (6),
but such transitions have not previously been
observed in microscopic flows. In this work,
we found substantial transitions in micro-
channels even when using polymer solutions
with such low viscosities and short relaxation
times that viscoelastic effects would be diffi-
cult to measure in macroscopic experiments.

The flux stabilizer that we constructed is
shown in Fig. 1. It is a nonlinear fluidic
resistor, where the volumetric flux rate, Q,
through a channel of a special shape depends
on the applied pressure in a nonlinear fashion.
The channel is a chain of halves of broad
ellipsoidal rings interconnected by narrow
bottlenecks (9), thus forcing the working flu-
id through a sequence of expansions and
contractions (10). When a fluid element pass-
es through a contraction, it becomes extended
along the flow direction, as do the polymer
molecules within it. If the rate of extension, ε̇,
is sufficiently large compared to 1/, the
polymer molecules can unravel (11). Their
contribution to the flow resistance grows
quickly and nonlinearly, and the apparent
viscosity of the polymer solution may in-
crease by a few orders of magnitude (12).
Transition to this nonlinear flow regime is
independent of Re and should occur when Wi
is greater than 0.5 (6, 11, 12).

The dependence of Q on the pressure drop
per segment, 
P (13), is shown in Fig. 2. Ini-
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