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An efficient method of computing magnetic exchange interactions in systems with strong correlations is
introduced. It is based on a magnetic force theorem that evaluates linear response due to rotations of
magnetic moments and uses a generalized spectral density functional framework allowing us to explore
several approximations ranging from local density functional to exact diagonalization based dynamical
mean field theory. Applications to spin waves and magnetic transition temperatures of 3d metal mono-
oxides as well as high-Tc superconductors are in good agreement with experiment.
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Obtaining a quantitative theory of magnetic materials
spanning from itinerant to atomic limit, above and below
their temperatures of magnetic ordering has been a theo-
retical challenge for many years [1]. By now itinerant
magnets are well described by local spin density approxi-
mation (LSDA) of density functional theory (DFT) [2],
where methodologies based on spin-spiral frozen-magnon
technique [3], the use of magnetic force theorem [4] via an
evaluation of linear response due to rotations of magnetic
moments as well as spin dynamics calculations [5] have
allowed access to a great variety of magnetic properties
[6–10].

However, there is a large class of systems where calcu-
lations of exchange interactions is still a challenging theo-
retical problem. These are strongly correlated systems such
as high-Tc superconductors or atomic magnets where the
on-site Coulomb interaction U is comparable to or larger
than the bandwidth. In cases where magnetic ordering and/
or lattice distortions result in a nondegenerate equilibrium
state, techniques such as LDA�U [11] or GW [12] have
been applied to describe spectroscopy, magnetic moments,
and even spin-wave spectra of systems such as MnO [13].
However, in general, excitation spectra of strongly corre-
lated systems are not representable by single Slater deter-
minants and show such features as atomic multiplets [14],
Zhang-Rice singlets [15], Kondo resonances, etc. In Mott-
Hubbard insulators the energy gap is much larger than the
magnetic ordering temperature above which a local mo-
ment regime takes place, i.e., the system becomes para-
magnetic but remains insulating. These properties cannot
be accessed either by static mean field approaches such as
LSDA or LDA�U or by perturbation theory over the
Coulomb interaction such as the GW approximation.
While versions of static [16] as well as dynamic [17]
coherent potential approximations have been introduced
in the past to access disordered local moment regime,
developing a generalized framework having a capability
to compute exchange interactions in both itinerant and
atomic limits as well as in many intermediated cases would

open new opportunities in computational design of new
magnetic materials.

In the present Letter we explore a spectral density func-
tional framework [18] to deal with this problem. It is based
on a combination of LDA and dynamical mean field theory
[18], a recently developed electronic structure method
which has helped to solve several long-standing problems
[19–22]. It describes correctly both itinerant and atomic
limits and accesses ordered and disordered moment re-
gimes on equal footing. This is achieved by treating corre-
lated electrons with frequency dependent self-energies
extracted from solving corresponding Anderson impurity
problem (AIM) subjected to a self-consistency condition.

In order to deduce exchange constants for general wave
vector q we use a linear response based magnetic force
theorem [4,23] and explore several levels of approxima-
tions: standard LSDA, as well as approximations for solv-
ing the impurity problem: Hartree Fock solution (so-called
LDA�U [11]), atomic exact diagonalization [24] known
as Hubbard I and newly implemented cluster exact diago-
nalization (CED) which takes into account the effect of
hybridization locally. These methods are used to calculate
self-consistently local Green functions, self-energies, and
static linear response functions of several Mott-Hubbard
insulators. We find consistent improvement of the accuracy
delivered by each subsequent method as compared to
experiment for both the deduced spin-wave spectra as
well as for magnetic ordering temperatures which are
evaluated using Monte Carlo simulations of the mapped
Heisenberg Hamiltonians.

Our implementation is based on a most recent many-
body band structure algorithm [25] which allows us to
avoid the computationally expensive solution of the
Dyson equation �!�H0�k� � ��!��G�k; !� � 1 for the
electronic Green function G�k; !� at a large grid of fre-
quencies!. This is achieved by assuming a pole expansion
for the self-energy ��!� � ��1� �

P
iV
�
i �!� Pi�

�1Vi
so that the entire problem is reduced to a matrix equation
with an energy-independent Hamiltonian
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!�H0�k� � ��1� V�

V P

� �
G�k; !� � I; (1)

where I is the unit matrix and the auxiliary Green function
G���k; !� is a matrix in the space of poles, while the
physical Green function G�k; !� corresponds to the first
element of G�k; !�. Weights V�i , Vi and poles Pi can be
viewed as matrices that provide a best fit to real ��!�.

It is remarkable that the present procedure allows us to
use an expression for the interatomic exchange constants
similar to a linear response formula derived within DFT
[4]. Consider second-order change in the total energy
related to the rotations of the magnetic moments appeared
at sites R� � and R0 � �0 of the lattice (here R are the
lattice translations and � are the atoms in the basis). The
local magnetic field B� at every atomic site � is approxi-
mately described by the values of the self-energy taken at
! � 1 [for example, Bz� � �""� �1� � �##� �1�]. Thus, ac-
cording to the magnetic force theorem which assumes a
rigid rotation of atomic spin, a linear response theory
expresses the interatomic exchange constants in the form
 

J���R�0R0 �
X

q

X
kjj0

fkj � fk�qj0

�kj � �k�qj0
h kjj���B���j k�qj0 i

� h k�qj0 j��� B�0 ��j kjie
iq�R�R0� (2)

Here,� is the Pauli matrix while the one-electron energy
bands �kj and quasiparticle wave functions  kj appear as
the solutions of Eq. (1), when using a quasiparticle repre-
sentation for the Green function G�k; !�. While viewed
noninteracting-like, this formula indeed contains major
information about many-body features in the excitation
spectrum. In particular, multiplet transitions as well as
delocalized parts of the electronic states are represented
by separate ‘‘energy bands’’ �kj including its k dispersion
which is borrowed from the noninteracting Hamiltonian
H0�k�. Thus, genuine redistribution of spectral weight
driven by the many-body interactions is correctly captured
by the present method which will give an important feed-
back on the calculated exchange interactions.

There are two essential approximations which are made
to make the theory computationally tractable. As has been
discussed recently [23], the magnetic force theorem can be
introduced for a Lattinger-Ward functional which would
involve calculations of full frequency dependent integrals
between the self-energies and the Green functions. The
present method uses (i) the Hartree Fock values for the
local magnetic fields, and (ii) rational fit to the self-energy,
which allows us to perform all frequency summations
analytically while retaining all major many-body multiplet
features of the spectrum in the convenient linear response
expression (2).

To illustrate the method we consider several transition-
metal oxides MnO, FeO, CoO, NiO as well as parent
high-Tc compound CaCuO2. It is well known that LSDA

significantly underestimates the band gap of MnO and NiO
and fails to predict insulating character for FeO, CoO, and
CaCuO2. The LDA�U corrects for these failures but
needs to assume a symmetry breaking for FeO and CoO.
It is clear that being a Hartree Fock approximation the
LDA�U would converge to a single Slater determinant
ground state, whereas in many cases either degeneracy of it
or proximity of low-lying excited states needs to be in-
cluded in statistical averagings for the one-electron Green
functions. All static mean field theories would necessarily
fail to describe paramagnetic insulating behavior while the
LDA� DMFT should be valid for both ordered and local
moment regimes. Here, we consider the d electrons of
transition-metal elements as strongly correlated thus re-
quiring dynamical treatment. The s and p electrons are
assumed to be weakly correlated and well described by the
LDA Hamiltonian HLDA�k� including the full potential
terms of the linear muffin-tin orbital (LMTO) method
[26]. To consider relativistic effects, the spin-orbit cou-
pling is taken into account in all cases. To obtain the one-
particle potential H0�k� � HLDA�k� � Vdc entering (1) we
subtract the double counting term Vdc as prescribed by
Ref. [11]. To avoid overcounting, we also neglect local
spin density terms in HLDA�k� while performing calcula-
tions using the LDA�U and LDA� DMFT method. We
use the experimental lattice structures for all materials.

For transition-metal mono-oxides the clusters needed for
our newly implemented CED solver are chosen to include
d orbitals of transition-metal ions hybridized with oxygen
p orbitals in the octahedral environment. It has been known
for many years that such treatment provides a good de-
scription of photoemission spectra in these materials
[27,28]. For CaCuO2 this is reduced to a Cu d orbital
surrounded by an oxygen square. This allows us to capture
both the effect of atomic multiplets and the Zhang-Rice
singlet [15] being the lowest lying excitation of undoped
high-Tc compunds. Remarkably that similar effect is also
present in low-energy excitations of all transition-metal
oxides: the coupling of an oxygen hole to a local moment
of transition-metal ion would lead to an appearance of low-
spin state generalizing the Zhang-Rice singlet physics.
During iterations towards self-consistency, the Anderson
impurity problem is exact diagonalized each time with the
positions of 3d levels, the d-p hybridization matrix ele-
ments as well as the O2p levels extracted from the
HLDA�k�. The latter being a density functional is allowed
to recompute and readjust the parameters of AIM. The
values of the Coulomb interaction U as well as the
Hund’s exchange J were obtained earlier by the con-
strained LDA calculation [11]. The AIM gives access to
the frequency dependent self-energies of d electrons which
are then rationally approximated by assuming three-pole fit
for the self-energy.

Our calculated ground state properties including mag-
netic moments and energy gaps are found to be in good
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agreement with experiment both below and above mag-
netic ordering temperatures. Below TN this result is in
accord with the previous LDA�U studies [11] while
our numerical results indeed show that dynamical correla-
tions only marginally influence values of magnetic mo-
ments in cases such as MnO, NiO, and CaCuO2. On the
other hand, for CoO and FeO, their t2g bands are only
partially occupied and the ground states become degener-
ate. Therefore small value of spin-orbital coupling has a
large effect on an appeared orbital moments which are
evaluated to be 0:36�B and 1:02�B in our cluster exact
diagonalized LDA� DMFT calculations for FeO and
CoO, respectively. The LDA�U is also capable of recov-
ering the insulating character here but by assuming sym-
metry lowered orbitally ordered solution.

Based on the self-consistently obtained local Green
functions and self-energies we evaluate the interatomic
exchange constants as integral over the q space using
(6,6,6) reciprocal lattice grid and use Monte Carlo simu-
lations [7] of the correspondingly mapped Heisenberg
Hamiltonians to find Néel temperature (TN), and show
the results in Table I. Because of underestimation of energy
gap, LSDA significantly overestimates TN as seen in
Table I. (Because for FeO, CoO, and CaCuO2, LSDA
converges to a completely wrong metallic state, we omit
quoting those predictions.) The LDA�U method fixes the
gap problem and this makes TN smaller but still much
larger than the experimental ones. This is in agreement
with the previously reported results for MnO [13].
Hubbard I approximation further reduces TN while our
best results are seen to be obtained by allowing d electrons
to fluctuate between the bath and impurity as prescribed by
our CED calculation. This effect is missing in the
Hubbard I solver and seriously affects the electronic struc-
ture of studied materials as, for example, it redistributes the
d-electron spectral weight to low energies and leads to the
Zhang-Rice singlet or its generalized low-spin states. In an
extreme situation, where the hybridization is much larger
than the local Coulomb U, the magnetization would even-
tually disappear due to strong fluctuation in the number of

d electrons at the impurity site. So it is easy to understand
why the CED method gives smaller magnetic transition
temperatures that are now closer to the experiments.

It is interesting to discuss the physical reasons why TN
decreases when going from NiO to MnO. This trend is seen
in all our calculations with correlations included as seen
from Table I. These Mott-Hubbard insulators show almost
atomic values of magnetic moments M � 10� n corre-
sponding to dn configurations, which would under assump-
tion of the same antiferromagnetic exchange constant JAF

meaning that the ordering temperatures should increase
with increasing the moments. However, JAF will decrease
significantly due to the change in the lattice parameter.
Also, during the evaluation of TN we need to account for
the quantum averaging for atomic spins directions which
gives a prefactor S�S� 1�=S2 deviating from 1 for small S.
To sort out these effects we first performed a sample
calculation for NiO with the expanded lattice constant of
MnO. The TN for NiO has dropped from 519 to 327 K in
this case. Second, because SNi � 1 while SMn � 5=2, the
prefactor S�S� 1�=S2 would account for a 40% difference
so that 327� 1:4=2 � 229 K is the Néel temperature that
we need to compare with our predicted TN � 172 K for
MnO. The residual discrepancy can be attributed to differ-
ent exchange splittings which also affects JAF as pointed
out earlier [31].

We now discuss our calculated spin-wave dispersions
along major symmetry directions in the Brillouin Zone
(BZ). We first illustrate the results of NiO in Fig. 1. In
accord with our predictions for the TN , the spin waves are
seriously overestimated by the LSDA but get closer to the
experiment once correlations are taken into account. The
best accuracy is achieved when using the CED as the
impurity solver. Second, we discuss our calculated spin-
wave spectra for other transition-metal oxides. Table II
shows our calculated spin-wave dispersion coefficients

TABLE I. Comparison of calculations using various approx-
imations and experimental magnetic transition temperatures (in
K) in selected Mott-Hubbard systems. Hubbard I and cluster ED
denote the results of LDA� DMFT calculations using
Hubbard I and cluster exact diagonalization impurity solver.

LSDA LDA�U Hubbard I Cluster ED Experiment

MnO 423 240 180 172 122a

FeO 	 	 	 344 297 211 198a

CoO 	 	 	 407 356 300 291a

NiO 965 603 542 519 523a

CaCuO2 	 	 	 765 698 602 537b

aReference [29]
bReference [30]
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FIG. 1 (color online). Theoretical spin-wave dispersions for
NiO (solid lines) calculated by LSDA, LDA�U, Hubbard I and
cluster exact diagonalization (CED) diagonalization impurity
solvers in comparison with the experiment (circles) [35].
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for FeO, CoO, and MnO, which we extracted by fitting the
spin-wave energy to linear form E�q� � aq. This is valid
for antiferromagnets as long as we do not approach very
small q’s where the Goldstone theorem is violated due to
spin-orbit effect or unless we are near the BZ boundary.
Again the trend to reduce the disagreement with experi-
ments is seen when doing more and more accurate many-
body calculations.

In summary, we presented a linear response method to
calculate the exchange interaction parameters of strongly
correlated systems valid as long as mapping of total energy
functional to rigid spin based Heisenberg Hamiltonians
makes sense. By using the rational interpolation for the
self-energy, our approach is very efficient, and this has
allowed us to describe quantitatively spin-wave dispersions
and magnetic transition temperatures of several realistic
Mott-Hubbard insulators with many atoms per unit cell.
Applications to metallic systems are more challenging as
they may need much larger clusters to account for such
subtle effects as, e.g., the Kondo screening, and will be
carried out in future work.
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