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We propose a cellular version of dynamical mean field theory which gives a natural generalization
of its original single-site construction and is formulated in different sets of variables. We incorporate
a possible nonorthogonality of the tight-binding basis set and prove that the resulting equations lead to
manifestly causal self-energies.
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Dynamical mean field theory (DMFT) has been very
successful in describing many aspects of strongly corre-
lated electron systems [1], and presently much effort is
being put into implementing it for realistic calculations of
material properties of solids [2]. This method is exact in
the limit of infinite lattice coordination [3] and describes
correctly local correlations including magnetically ordered
phases [4,5]. However, many applications require generali-
zations of the DMFT to capture short-range correlations,
in the absence of broken symmetries. This is an active area
of research and several methods have already been put for-
ward [1,6–10].

The idea behind cluster methods is to treat local (clus-
ter) degrees of freedom exactly while replacing the re-
maining degrees of freedom with a bath of noninteracting
electrons which hybridize with the cluster so that the trans-
lation invariance is restored. The basic difficulty here is
determining a suitable self-consistency condition without
generating nonphysical solutions violating causality [11].

In this paper we propose an alternative generalization
of DMFT, which can easily be formulated in real space,
and in an arbitrary basis set, and which has excellent con-
vergence properties as a function of cluster size. DMFT
can be viewed as an extension of the coherent potential
approximation (CPA), and several approaches to incorpo-
rate k dependence in the self-energy have been considered
[11,12] in this framework. Our proposal can be viewed
as an extension of those generalizations of CPA for in-
teracting systems. We prove two central points: (I) The
DMFT construction [1] can be formulated in a large class
of basis sets. This observation frees us from the need to
introduce sharp boundaries in real space. This approach is
inspired by ideas from electronic structure, in which one
achieves a cellular description by means of orbitals which
can have a variable spatial extension. (II) This cellular
DMFT (CDMFT) construction is manifestly causal, i.e.,
the self-energies that result from the solution of the clus-
ter equations obey Im S�k, v� # 0, eliminating a priori
one of the main difficulties encountered earlier in devising
practical cluster schemes.

It is useful to separate the three essential elements of a
cluster scheme: (a) The definition of the cluster degrees
of freedom, which are represented by impurity degrees of
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freedom in a bath described by a Weiss field matrix func-
tion Ĝ0. The solution of the cluster embedded in a medium
results in a cluster Green’s function matrix and a clus-
ter self-energy matrix. (b) The expression of the Weiss
field in terms of the Green’s function or the self-energy
of the cluster, i.e., the self-consistency condition of the
cluster scheme. (c) The connection between the cluster
self-energy and the self-energy of the lattice problem. The
impurity solver estimates the local correlations of the clus-
ter, while the lattice self-energy is projected out from the
cluster self-energy by exploiting the use of additional in-
formation, i.e., the periodicity of the original lattice.

Our construction applies to very general models.
It should be thought of as an extension of the band
structure formalism in the Korringa-Kohn-Rostocker
formulation that takes into account the electron-electron
interactions. The lattice Hamiltonian, H�fis, fy

is�, (one
example could be the well-known Hubbard Hamiltonian),
is expressed in terms of creation and annihilation operators
fis and f

y
is, where i runs over the sites of a d-dimensional

infinite lattice i � �i1, . . . , id� and the index s denotes
an internal degree of freedom such as a spin index or
a spin orbital or band index if we consider an orbitally
degenerate solid.

(a) Selection of cluster variables.—The first step in a
mean field approach to a physical problem is a selection
of a finite set of relevant variables. We do that by choos-
ing a tight-binding basis for supercells with translation
vectors Rn, i.e., jRna� partially localized around Rn

with a � 1, . . . ,N denoting an internal cluster index.
The relation between the new wave functions, jRna�, and
the old wave functions, jis�, is encoded in a transforma-
tion matrix, SRna,is, such that jRna� �

P
is jis�S21

is,Rna .
Because of the translation symmetry of the lattices, we
obtain SRna,is � Sas�r�i� 2 Rn�, where r�i� is the posi-
tion of site i. The creation and annihilation operators of
the new basis are related to the operators of the old basis
by cRna �

P
is SRna,isfis, and the operators that contain

the ”local” information that we want to focus our attention
on are ca � c�Rn�0�a , i.e., the operators of the cluster at
the origin. We will refer to these operators as the cluster
operators. Note that we do not require that the wave
function basis be orthogonal, and the nonorthogonality is
© 2001 The American Physical Society 186401-1
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summarized in an overlap matrix Omn
mn � Omn�Rm 2

Rn� � �Rmm jRnn�.
The next step is to express the Hamiltonian in terms of

the complete set of operators cRmm. In terms of the new
set of variables it has the form

H � 2
X

RmmRnn

tmn�Rm 2 Rn�c1
RmmcRnn

1
X

R1mR2nR3rR4ß

Umnrß�	Ri
�c1
R1mc1

R2ncR4ßcR3r . (1)

Equation (1) is a general Hamiltonian of electrons in a solid
in some tight-binding nonorthogonal basis. The Hamilto-
nian is now split into three parts, H � Hc 1 Hcb 1 Hb

where Hc involves only the cluster operators, Hb contains
cRnm with Rn fi 0 only and plays the role of a ”bath,” and
finally Hcb contains both cRnm with R fi 0 and the cluster
operators cm. Physically Hcb couples the cluster with its
environment. A similar separation can be carried out at the
level of the action, in the coherent state functional integral
formulation of this problem, where the partition function
and the correlation functions are represented as averages
over Grassmann variables,

Z �
Z Y

Rna

Dc1
RnaDcRnae2S, (2)

where the action is given by

S �
Z b

o
dt

√ X
RmmRnn

c1
RmmOmn

mn≠tcRnn 2 H�c1
Rmm, cRnn �

!

� Sc 1 Scb 1 Sb . (3)

The effective action for the cluster degrees of freedom is
obtained conceptually by integrating out all the variables
cRnm with Rn fi 0 in a path integral to obtain an effective
action for the cluster variables cm, i.e.,

1
Zeff

e2Seff�c1
mcm� �

1
Z

Z Y
Rmfi0,m

Dc1
RmmDcRmme2S . (4)

Note that the exact knowledge of Seff allows us to cal-
culate all the local correlation functions involving cluster
operators. As described in [1], this cavity construction,
if carried out exactly, would generate terms of arbitrarily
high order in the cluster variables. Two approximations
are done at this stage. All interactions whose range goes
beyond the extent of the cluster are neglected since only
Umnrß�	0
�. Furthermore, the renormalization of the quar-
tic and higher order terms in the effective action are not
taken into account. The extended dynamical mean field
approach introduced in Ref. [10] was designed to improve
precisely this aspect of the cavity construction, and these
improvements can be combined with the suggestions in
this paper. The numerical results discussed below, how-
ever, suggest that these corrections are numerically small,
at least when the range of the interactions is smaller than
the cluster size, making this method relevant for the treat-
ment of interactions beyond the on-site Hubbard interac-
tion. Since the action Scb contains only boundary terms,
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the effects of these operators will decrease as the size of the
cluster increases. Our numerical results below assume that
they are not important in models with short-range inter-
actions, even in small clusters. Within these assumptions,
the effective action is parametrized by G0,mn�t 2 t0�, the
Weiss function of the cluster, and has the form

Seff � 2
Z b

0
dtdt0

X
mn

c1
m �t�G21

0,mn�t 2 t0�cn �t0�

1
Z b

0
dt1 dt2 dt3 dt4

3 Gmnrßc
1
m �t1�c1

n �t2�cß�t4�cr�t3� , (5)

where Gmnrß � Umnrß�	0
�. By using the effective action
(5), one can calculate the Green’s functions of the clus-
ter Gc,mn�t 2 t0� �Ĝ0� � 2�Ttcm�t�c1

n �t0�� �Ĝ0� and the
cluster self-energies

Ŝc � Ĝ21
0 2 Ĝ21

c . (6)

(b) Self-consistency condition.—The cluster algorithm
is fully defined once a self-consistency condition which
indicates how Ĝ0 should be obtained from Ŝc and Ĝc is
defined. In the approach that we propose here the self-
consistent equations become matrix equations expressing
the Weiss field in terms of the cluster self-energy matrix
Ŝc.

Ĝ21
0 �

√X
k

1

�iv 1 m�Ô�k� 2 t̂�k� 2 Ŝc

!21

1 Ŝc ,

(7)

where Ô�k� is the Fourier transform of the overlap matrix,
t̂�k� is the Fourier transform of the kinetic energy term of
the Hamiltonian in Eq. (1), and k is now a vector in the
reduced Brillouin zone (reduced by the size of the cluster).
Equations (5) and (7) can be derived by scaling the hopping
between the supercells as the square root of the coordina-
tion raised to the power of the Manhattan distance between
the supercells and generalizing the cavity construction of
the DMFT [1] from scalar to matrix self-energies. An
important difference between Eq. (7) and the DCA equa-
tions [7] is that they yield cluster self-energies which are
not diagonal in the cluster momenta. A detailed compari-
son between CDMFT and DCA will be presented else-
where [13].

(c) Connection to the self-energy of the lattice.— In
CDMFT the lattice self-energy does not participate in the
self-consistent equations, and has to be estimated from
the cluster self-energy, Ĝc and Ŝc, using additional in-
formation, such as conservation laws and translation in-
variance. The simplest estimator uses the transformation
matrix SRma,is and is given by the equation

Slat,ss0�k, v� �
X
mn

S̃y
s,m�k�Sc,mn�v�S̃n,s 0�k� , (8)

where S̃ is the Fourier transform of the matrix S with
respect to the original lattice indices i. Once a basis set
186401-2



VOLUME 87, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 29 OCTOBER 2001
and a cluster shape are specified, improved estimates can
be obtained to minimize finite size effects [13].

(d) Connection to impurity models.—As in single-site
DMFT it is very convenient to view the cluster action as
arising from a Hamiltonian,

Himp �
X
rß

Êrßc
1
r cß 1

X
mnrß

Gmnrßc
1
mc1

n crcß

1
X
kl

ekla
1
klakl 1

X
kl,m

�Vkl,ma1
klcm 1 H.c.� .

(9)

Here ekl is the dispersion of the auxiliary band and Vkl,m

are the hybridization matrix elements describing the effect
of the medium on the impurity. When the band degrees
of freedom are integrated out, the effect of the medium is
parametrized by a hybridization function,

Dmn�ivn� �ekl, Vkl� �
X
kl

V �
kl,mVkl,n

ivn 2 ekl

. (10)

The hybridization function is related to the Weiss field
function by expanding Eq. (7) in high frequencies:

Ĝ21
0 �ivn� � ivnŌ 2 Ê 2 D̂�ivn� (11)

with Ō � �
P

k Ô
21
k �21 indicating that the impurity model

has been written in a nonorthogonal local basis with an
overlap matrix Ō.

Let us now consider some examples of this approach.
(i) Single-site DMFT.— The simplest example is the

single-site dynamical mean field theory which is exact in
the limit of infinite dimensions. In this case the cluster
is just a single site denoted by 0, and the cluster opera-
tors are the creation and annihilation operators of that site,
c1

0s, c0s . The cluster Hamiltonian is diagonal in the spin
variables and reduces to the effective action of the An-
derson impurity model. The next step is a scalar equa-
tion Ĝ21

0 � Ĝ21
c �G0� 1 Ŝc�G0�. Finally the last step

identifies the self-energy of the cluster with the lattice
self-energy.

(ii) Free cluster.—The next example is a free cluster
scheme for the one-band Hubbard model. The method di-
vides the lattice into supercells, and views each supercell as
a complex “site” to which one can apply ordinary DMFT.
Here Rn is the supercell position and a labels the different
sites within the unit cell and the spin. Introducing a spin
label s and a supercell notation where an atom is denoted
by the supercell, Rn, and the position inside the supercell,
l, a � �s0, l� and SRna,is � ds,s0dRn1l,ri is diagonal in
spin and position. In this case the overlap matrix is the
identity. This real space cluster method was investigated
using quantum Monte Carlo methods by Katsnelson and
Lichtenstein [14].

(iii) Multiorbital DMFT in a nonorthogonal basis.—
Another important special case for our general construc-
tion is the implementation of single-site DMFT in a
nonorthogonal basis. In this case the supercell is a single
186401-3
site, but the wave functions defining the cluster operators
are chosen so that they are very localized in real space.

An implementation of this method, in conjunction with
a generalization of the interpolative perturbation theory,
as an impurity solver, has resulted in new advances in
the theory of plutonium [2]. Here the flexibility in the
choice of basis is crucial for the success of the DMFT pro-
gram. DMFT neglects from the start the interactions which
are not on site. A high degree of localization requires a
nonorthogonal basis and the formalism introduced in this
Letter.

(d) Other bases.—Finally we point out that the most
attractive feature of this method is that it would allow
its formulation in terms of wave functions which are par-
tially localized in real and momentum space like wavelet
functions. This flexibility is most appealing for treat-
ing problems such as the Mott transition, where both the
particlelike and the wavelike aspects of the electron need
to be taken into account, requiring a simultaneous consid-
eration of real and momentum space.

We now prove that the CDMFT approach gives mani-
festly causal Green’s functions. For this we assume that we
start the DMFT iteration with a guess for the bath function
D̂ which is causal. The self-energy which is generated in
the process of solving the “impurity model” is also causal.
Furthermore, any sensible approximation technique used
to compute the self-energy of the cluster respects causal-
ity, so our proof is valid not just for exact solutions of
the CDMFT scheme but also for approximate solutions as
long as the impurity solvers used in the solution of the
cluster impurity problem preserve causality. The next step
is to show that, if a causal self-energy is introduced in
the self-consistency condition [Eq. (7)], the resulting bath
function D̂ is causal. Since both Ŝc and D̂ are matrices,
the causality condition needs to be formulated precisely. A
fermionic matrix function, A�v�, is causal if it is analytic
in the upper half of the complex frequency plane and has
a spectral representation with the positive-definite spectral
density matrix 21

2pi 	A�v� 2 Ay�v�
. It is easy to see that
the DMFT equation leads to the correct analytic proper-
ties, and the following proof establishes the positivity of
the bath spectral density. By writing SR � e 2 ig with
e, g Hermitian and g positive definite, we get

�D̂y
R 2 D̂R� � 2 2ig

1
p

g

√(X
k

1
i 1 dk

)21

2

(X
k

1
2i 1 dk

)21!
p

g . (12)

Positivity is reduced to proving that the following matrix
is negative [15], i.e.,

2 2

(X
k

1
1 2 idk

)21

2

(X
k

1
1 1 idk

)21

# 0 . (13)
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Here vÔ�k� 2 t̂�k� 2 e � p
g dk

p
g. By performing a

change of variables dk � i
eiuk 1e2iuk

eiuk 2e2iuk with uk , a Hermitian
matrix, Eq. (13) reduces to proving that

1 # min
x

�xj �1 2 z�21 1 �1 2 zy�21 jx�
�x j x�

. (14)

where z � ��e22iuk��, with ��. . .�� denoting an average over
the Brillouin zone. By performing the substitution jx� �
�1 2 z� j y�, Eq. (14) reduces to

1 # min
jjyjj�1

2 1 � yjz 1 zyj y�
1 1 � yjzyzjy� 1 � yjz 1 zyj y�

(15)

which clearly holds due to the fact that z is an average of
unitary matrices, and has the property jjzyzjj # 1. From
Eqs. (15) and (8) it follows that the imaginary part of
the retarded self-energy is always less or equal to zero,
completing the proof of causality. This proof generalizes
Ref. [7] from scalar to matrix CPA equations.

Convergence properties.—This cluster formulation
does not introduce any discontinuities in momentum
space, suggesting that it will have superior convergence
properties as a function of cluster size. We tested this
hypothesis in a very simple model, a one-dimensional
version of the model introduced by Affleck and Marston
[16] in its uniform phase. This model contains an SU�N�
nearest-neighbor spin-spin Heisenberg interaction with
strength J�N and chemical potential m to control the
density and a nearest-neighbor hopping term with strength
t. This model is exactly soluble in the large N limit,
allowing a simple test of the convergence properties of
the solution of the CDMFT equations. In Fig. 1 the con-
vergence of the fermion equal time correlation function

� fy
isfj,s�, for i, j nearest neighbors, is plotted for various

CDMFT cluster sizes, and the fast approach to the infinite
cluster answer (dotted line) is indicated. More extensive
studies are consistent with this rapid convergence of the
CDMFT scheme and will be published elsewhere [13],
together with comparisons with other cluster methods.

In conclusion, DMFT has produced a wealth of infor-
mation on problems where the physics is local, and cluster
methods promise to be equally fruitful in more complex
problems where correlations between more sites and or-
bitals need to be taken into account. All the techniques
which have been used for the solution of the single-site
DMFT are applicable to this cluster extension. In this pa-
per we limited ourselves to states without broken symme-
tries; further extensions of the cellular DMFT approach to
states with broken symmetries as well as solutions of the
CDMFT equations using exact diagonalization techniques
are currently under investigation [17].
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FIG. 1. The correlation function C is plotted as a function of
the inverse temperature for m � 1 and t � 1. The solid line
is the exact solution. The dot-dashed, dashed, and dotted lines
are, respectively, the CDMFT predictions for two-, three-, and
four-site clusters.
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