VOLUME 72, NUMBER 3

PHYSICAL REVIEW LETTERS

17 JANUARY 1994

Linear-Response Calculations of Electron-Phonon Interactions
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A new, generally applicable method is developed for ab initio calculation of the wave-vector
dependent electron-phonon coupling. The screening of the one-electron potential is evaluated by
linear-response theory using the local-density approximation and linear muffin-tin orbitals. We
calculate electron-phonon coupling strengths and transport properties in Al and, for the first time,
in Nb and Mo. Our results are consistent with the experimental results and are compared with

previous theoretical results.

PACS numbers: 63.20.Kr, 71.10.4-x, 72.15.Eb

The electron-phonon interaction is decisive for many
properties of metals [1], such as the electrical and ther-
mal resistivities, superconductivity, and the renormaliza-
tion of the linear electronic specific heat. In the strong-
coupling theory of superconductivity [2], a central quan-
tity is the electron-phonon spectral distribution function
o?F(w) and its first reciprocal moment A. The problem
to calculate A ab initio is important, in particular, for
quantitative understanding of high-temperature super-
conductivity. The purpose of this Letter is to develop
a new generally applicable method for calculating this
quantity which essentially amounts to the self-consistent
finding of the full low-energy excitation spectrum of the

metal: the quasiparticle energies Ey; and the phonon

frequencies wy,. The most popular estimate of Ey; is
the one-electron band structure obtained from a density-
functional calculation in the local-density approximation
(LDA) [3]. L

Many previous attempts to compute A, in particular
for transition metals, focused on calculating merely the
so-called electronic contribution [4], while the phonon fre-
quencies and eigenvectors were usually taken from inelas-
tic neutron-scattering data and the self-consistent adjust-
ment of the one-electron potential to the phonon distor-
tion was replaced by rigid-ion [5] or rigid-muffin-tin [6]
approximations (RIA or RMTA). That these approxima-
tions are not justified in general was shown for the case
of aluminium by Winter [7] using linear-response theory
for the screening.

Accurate phonon frequencies and eigenvectors, as well
as the self-consistent screening and, hence, the electron-
phonon interaction, may however, be calculated with
the frozen-phonon total-energy approach using super-
cells, but only for commensurate phonon wave vectors q
[8-11]. With the crude sampling allowed by the limited
size of the supercell, the accuracy of g-integrated quan-
tities like A is usually not high enough for estimating for
instance T. N -

An efficient linear-response technique based on the
solid-state Sternheimer method [12] was recently devel-
oped and shown to produce accurate phonon disper-
sions and eigenvectors for arbitrary q in transition met-
als [13). The important advantage of this method over
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that of Baroni et al. [12] that systems with narrow bands
such as d bands are treated as easily as systems with
only broad bands because it uses muffin-tin, rather than
plane-wave, basis sets for the electron wave functions. In
the present Letter, we generalize this method to the com-
putation of the wave-vector dependent electron-phonon
coupling. The screening potential for every q is found
self-consistently without the use of any RMTA or RIA.
a?F(w) and X are obtained by integration over the whole
Brillouin zone. We demonstrate the applicability of this
all-electron approach by computing o2 F(w) for a few el-
emental metals, the sp-band metal Al and for the d-band
metals Nb and Mo. Moreover, we present the results for
the transport properties: the dimensionless A¢; as well as
the phonon-limited electrical and thermal resistivities at
273 K. For the d-band metals, these are the first fully
screened ab initio calculations.

~-—.—-Our method employs the expression {14]

?F(w) = 51}—1%7@ Z —Z:—:&(w — Wav), (1)
qv

for a2 F(w) in terms of the phonon linewidths 4, arising
from the electron-phonon interaction. Here, and in the
following, we use atomic Rydberg units, Eq means the
average over the Brillouin zone (BZ), v numerates the
phonon branches, and N(0) is the electronic density of
states per atom and per spin at the Fermi level. The
linewidths are given by the Fermi “golden rule” which,
when the energy bands around the Fermi level are linear

in the range of the phonon energies, may be written as
Yav = 2MWqy Z 6(Exj )6(Ek+qj')lgl‘z-’:-qj',kj|2’ (2)
kjj’
where j and j' are the band indices, Ey; are the en-

ergies with respect to the Fermi level, and gﬁ_';_qj, Kj 18
the electron-phonon matrix element. The standard def-

_inition of g is simply the probability of scattering from

the one-electron state | kj} to the state | k -+ qj’) via the
phonon qu. In a case like ours, where the electronic states
are approximated by superpositions of atom-centered or-
bitals, it is inconvenient to evaluate this expression be-
cause it involves the orbitals at the equilibrium atomic
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positions and the potential for the displaced lattice. The
reason is that the states | kj) in the band calculation
are obtained not as ezact solutions of the one-electron
Scrédinger equation but as the best approximation for
the equilibrium positions, using the Rayleigh-Ritz vari-
ational principle with a finite orbital basis | xX). This
introduces important incomplete-basis-set (IBS) correc-
tions into the dynamical-matrix calculation [13]. The IBS
terms must also be taken into account when evaluating
the electron-phonon matrix elements. They can be eas-
ily found by repeating the standard quantum-mechanical
derivation of the Fermi golden rule: The scattering rate
for transitions from an initial, unperturbed state into a fi-
nal, perturbed state is the overlap integral squared. Since
the final state corresponds to the displaced lattice, the
best variational estimate for it must include the orbitals
centered at the new atomic positions and adjusted to the
new one-electron potential. To linear order with respect
to the displacements this leads to finding the change in
the basis | xX). The definition of g for use in (2) is thus

Gicrar g = (k+af'[ 6%V | k)

+ <Z 6V XETIAGTY | H — Eiy | kj>

«
+ <k+q7" | H— Ex; | Z5q"X§Al.§j>, 3
«@

where AX/are the coefficients of | xX) in the expansion of
| ki), and where 6%V and §9 xlo“ are, respectively, the
changes in the one-electron potential and the basis due
to the phonon distortion [15]. Formula (3) is the linear-
response analogy of evaluating gﬂiqj,’kj via the splitting
of the bands in the frozen-phonon supercell method as
done in Ref. [11]. It is less sensitive to the errors in the
wave functions introduced by the variational principle,
has a correct long wavelength behavior, and allows one
to avoid the inclusion of d — f transitions in d-electron
systems. The IBS corrections are represented by the sec-
ond and third contributions in (3). They disappear for
plane-wave basis sets but should be taken into account
when using linear muffin-tin-orbital (LMTO) and linear
augmented-plane-wave (LAPW) bases [16], as we shall
do.

The phonon linewidths 74, (2) often display violent
variations through the BZ [17] for phase-space reasons,
such as Fermi-surface nesting, and the g summation in
expression (1) for o?F(w) must therefore be performed
on a rather dense mesh. The phonon frequencies wy, are,
however, relatively smooth functions of q and need there-
fore not be computed on such a dense mesh. The proce-
dure we used is based on transformation of the dynamical
matrix to real space: First, we performed self-consistent
LDA-LMTO linear-response calculations [13] of wg, for
10 special q points. Each electronic-structure calcula-
tion employed a large number of k points (256) and a

double-£ spd-LMTO basis set [18] with the one-center
spherical-harmonics expansions of the wave functions, as
well as of the full potential, carried up to lmax=8. Next,
by summing over the 10 q points with the factor e@'T,
we constructed the dynamical matrix on the real-space
lattice T. Inverse Fourier summation and subsequent di-
agonalization finally yielded the phonon frequencies and
eigenvectors for any q. In order to calculate o?F(w) and
A, the phonon linewidths were calculated for 47 q points.
For each, the self-consistent screening potential 6%V was
found using a small setup (47 k points instead of 256 and
a single-x LMTO basis set) which introduces only a (1-
2)% error of the final results. The k-space integration in
(2) involving the two § functions was performed with a
very large number of k points (752) and using the full-
zone tetrahedron method [19]. The largest numerical er-
ror of a?F(w) came from the g-space integration in (1).
Its magnitude, we estimated by performing the integra-
tion over merely the band-structure factor [which is vq,
approximated by ijj, 6 (Ex;j) 6 (Fxtqj)] using respec-
tively 47 and 752 q points and found it to be about 6%
in both Nb and Mo. The total numerical error is thus
about 10%. All the calculations were performed at the
experimental lattice constants.

We now discuss our ab initio results obtained for Al.
Figure 1 shows the calculated a?F(w) (full line) in com-
parison with the tunneling measurements [20] (squares).
The two curves are similar. Our o?F(w) is found to be
very close to the empirical pseudopotential result [21]
based on the rigid-ion approximation. General agreement
is also found between our and the ab initio frozen-phonon
results of Dacorogna et al. [9] for the dispersion of vq,
along the high-symmetry directions. The only exception
is that, in the [110} direction, our longitudinal branch
exceeds theirs by a factor of 2, which is presumably con-
nected with replacing the § functions in (2) by Gaussians
used in Ref. [9]. However, the relative weight of our high
« values in the integrated quantity is found to be very
small. Our A value of 0.44 is very close to the value 0.42
extracted from the tunneling measurements [20] (see Ta-
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FIG. 1. Calculated spectral function o F(w) (solid line)
for Al in comparison with the tunneling data (squares) [20].
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TABLE I. Comparison between calculated and experimen-
tal values of electron-phonon coupling constant )\, electrical
resistivity p [uQ cm] and thermal resistivity w [Kcm/W] at
273 K. Also shown are the calculated transport parameters
A¢r- Values in parentheses give decomposition of A in Nb by
the Fermi-surface sheets (octahedron, jungle gym, and ellip-
soids).

Al Nb Mo
A2e 0.44 1.26(1.44,1.37,1.08) 0.42
AP 0.42° 1.33(1.71,1.43,1.10), 1.04° 0.44¢
Agale 0.36 1.17 ’ 0.35
p“l" 2.35 13.67 4.31
PP 2.43° 13.30° 4.88°
weele 0.42 2.17 073
wexP 0.42° 1.93° 072

*Reference [20]. T T

bReference [26].

°Reference [20], see also Ref. [25].
dFrom T, using #*=0.13.

¢Reference [31].

ble I). The frozen-phonon [9] and the linear-response cal-
culation of Winter [7] gave, respectively, A\ = 0.45 and
0.38. The A value derived from specific-heat measure-
ments with use of our calculated value for the density of
states at the Fermi level, N(0) =2.74 states/(Ry spin), is
0.42. In order to check previous conclusions [7,22] about
the inapplicability of the RMTA for sp metals, we also
performed such a calculation and indeed found A =0.14.
The further calculated quantities listed in Table I are the
electronic transport parameter A, as well as electrical
(p) and thermal (w) resistivities at 273 K. The compu-
tational method is analogous to that used in supercon-
ductivity theory and based on the low-order variational
estimate of the solution of Boltzman's equation [23]. We
have not found any qualitative differences in the calcu-
lated transport spectral function comparing to the usual
one; our Ay = 0.36, which is close to the superconducting
A. The calculated values of P a.nd w a.gree well w1th those
measured.

Nb is the best studied elemental superconductor,
mainly because of its relatively high 7, = 9.25 K. Many
theoretical RMTA based calculations exist in the litera-
ture [17,22,24] and a large variety of A (1.12-1.86) have
been obtained. Also the results of tunneling measure-
ments have been controversial [20]. In Fig. 2 we com-
pare our calculated o F'(w) (full lines) with the tunneling
data of Ref. [20] (squares). Even though the theoreti-

cal a? F(w) should be broadened because the § function

in Eq. (1) ought to be a Lorentzian of half-width ~qy,
this tunneling experiment yields a coupling (Ayun=1.04
[20,25]) which is weaker than what we calculate (A=1.26).
We obtain similar results with the RMTA, in full agree-
ment with earlier calculations [17,24], and thus conclude
that the full inclusion of screening does not resolve this
discrepancy. Comparison of our LDA band masses with
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- FIG. 2. Calculated spectral function o?F(w) (solid line)
for Nb in comparison with the tunneling data (squares) [20].

those measured by the de Haas-van Alphen (dHvA) ef-
fect [26] yields an average mass enhancement of 1.33,
~ which is close to the 1.26 found in our electron-phonon
calculation. The ratio of the measured electronic specific
heat coefficient to our calculated LDA density of states,
N(0) =10.21 states/{Ryspin), also yields an enhance-
ment of 1.3. Another important result is that the mea-
sured variation of the mass enhancement for the various
cyclotron orbits agrees well with what our linear-response
calculation yields (Table I), but it strongly disagrees with
what is found with the RMTA [26]. Now, since both
the cyclotron masses and the electronic specific-heat co-
efficient are enhanced by electron-electron interactions,
on top of the electron-phonon interactions, the tunnel-
ing data could still be correct and our calculation wrong.
However, our calculated values of electrical and thermal
resistivities are close to the measured values (see Table
I). Moreover, the LDA value for the spin-lattice relax-
ation rate calculated without any spin enhancement (be-
yond about 10%) is in good agreement with the exper-
imental value [27]. It therefore seems that the electron
phonon A is 1.2-1.3, and that the mass enhancement due
to electron-electron interactions is less than 20% in Nb.
Using such a large A value together with the measured T,
value in the McMillan formula [28] requires a Coulomb
pseudopotential of u* ~0.2 rather than the smaller value
~0.14 which is usually assumed [29)].

‘We finally discuss our results for Mo. There are no tun-
neling data for this material because of its low T, = 0.92
K and the weakness of phonon effects. Our linear-
response calculations of a?F(w) are found to be close
to our RMTA calculations and to earlier ones [30]. Our
total A is 0.42, which is in a good agreement with the
value 0.44 extracted from McMillan’s T, expression us-
ing p*=0.13. The calculated transport spectral function
displays behavior very similar to that of the superconduc-
tor (Mg = 0.35); our electrical and thermal resistivities
are close to those measured, as shown in Table L.

In summary, we have presented ab initio self-consistent
linear-response calculations of the electron-phonon cou-
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pling for Al, Nb, and Mo using the LDA and LMTO
basis sets. Our results show generally good agreement
between calculated and experimental electron-phonon-
coupling strengths and transport properties. This indi-
cates that ab initio calculations of electron-phonon inter-
actions are now feasible for metals with broad, as well
as with narrow bands. It seems that more experimental
and/or theoretical work is necessary to account for the
discrepancy between the existing tunneling and the other
data for Nb.

The authors are indebted to I. I. Mazin, E. G. Maksi-
mov, and A. I. Liechtenstein for many helpful discussions.

* On leave from P. N. Lebedev Physical Institute of the
Russian Academy of Sciences, 117924 Moscow, Russia.
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