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Linear Response Calculations of Lattice Dynamics in Strongly Correlated Systems
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We introduce a new linear response method to study the lattice dynamics of materials with strong
correlations. It is based on a combination of dynamical mean field theory of strongly correlated
electrons and the local density functional theory of electronic structure. We apply the method to study
the phonon dispersions of Mott insulators NiO and MnO in their paramagnetic insulating state not
accessible by local density functionals. Our results are in good agreement with experiment.
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sities and local Green functions induced by atomic
displacements.

the local Green function ĜG�!� as parameters of a spectral
density functional [13]. To find its extremum, a set of
Computational studies of lattice dynamics and struc-
tural stability in strongly correlated electronic systems is
a challenging theoretical problem. In the past density
functional theory in its generalized gradient or local
density approximations (LDA) [1] has delivered the full
lattice dynamical information and electron-phonon re-
lated properties of a variety of simple metals and tran-
sition metals, as well as semiconductors with exceptional
accuracy [2]. This is mainly due to the introduction of a
linear response approach [3,4]. This method overcame the
problems of traditional techniques based on static suscep-
tibility calculations which generally fail to reproduce
lattice dynamical properties of real materials due to
difficulties connected with the summations in high-
energy states and the inversion of very large dielectric
matrix [5].

Despite these impressive successes, there is by now
clear evidence that the present methodology fails when
applied to strongly correlated materials. For example, the
local density predictions for such properties as bulk mod-
ulus and elastic constants in metallic plutonium are
approximately 1 order of magnitude off from experiment
[6]; the phonon spectrum of Mott insulators such as MnO
is not predicted correctly by LDA [7].

In this Letter we describe a new linear response
method to study the lattice dynamics of correlated mate-
rials. It is based on the dynamical mean field theory
(DMFT) [8], a many-body technique developed to study
systems with strong on-site Coulomb repulsion. Recent
progress in merging [9] this many-body description with
the realistic LDA based electronic structure calculations
has already led to new insights in long-standing prob-
lems, such as the temperature dependence of the magnetic
properties of Fe and Ni [10], the volume collapse transi-
tion in Ce [11], and Pu [12,13]. We generalize this LDA�
DMFT method to carry out linear response calculations
by finding self-consistent changes in both charge den-
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The LDA� DMFT approach computes the total en-
ergy, the charge density, and the local spectral function
of the correlated electrons simultaneously. The latter
spectra are known to be quite different for a strongly
correlated system such as, e.g., heavy fermion metal,
from the Kohn-Sham spectra of the local density func-
tional theory due to the appearance of strongly renormal-
ized quasiparticle features at the Fermi level and lower
and upper Hubbard features or satellites at higher ener-
gies [8]. The LDA� DMFT technique can therefore
provide a link between the photoemission spectra and
the lattice dynamics of correlated materials, which is an
interesting open problem.

As a test we consider two Mott-Hubbard systems NiO
and MnO. Both materials are insulators with the energy
gap of a few eV regardless whether they are antiferro- or
paramagnetic. The spin dependent LSDA theory strongly
underestimates the energy gap in the ordered phase and
fails completely to describe the local moment regime
reflecting a general drawback of band theory to have a
wrong atomic limit. Therefore the real challenge for the
theory is to describe the paramagnetic insulating state
where the self-energy effects are crucial both for the
electronic structure and for recovering the correct pho-
non dispersions in these materials. In this work we
perform DMFT calculations by taking into account
many-body effects among d electrons via self-consistent
solution of the quantum impurity model [8]. The latter in
the regime of large U adequate for both NiO and MnO in
the paramagnetic phase can be treated within the well-
known Hubbard 1 approximation. We show that our new
method reproduces the properties of these materials in
good agreement with the experiments. We discuss how
correlations affect static dielectric properties and com-
pare our results with the paramagnetic LDA and antifer-
romagnetic LSDA, LSDA�U solutions.

Our approach considers both the charge density � and
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Dyson equations is solved self-consistently:

��r2 � Veff � �̂��!� � �̂�dc � �kj!� 
r
kj! � 0; (1)

where Veff is the effective potential of the local density
functional and �̂��!� is the local self-energy operator.
Since the local density approximation contains an average
correlation energy, a double counting term �̂�dc appears in
Eq. (1). Both Veff and �̂��!� are functionals of the density
and the local Green function which can be found using the
formula

ĜG�!� �
X

kj

 lkj! 
r
kj!

�kj! �!
: (2)

Note that the Green function is a non-Hermitian matrix
that is frequency dependent so both the eigenvalues � and
right/left eigenvectors  r;l are treated formally as fre-
quency dependent quantities: �kj!,  rkj!,  lkj!. (The lat-
ter satisfies the Dyson Eq. (1) with the wave function
placed on the left.) In practice [9,12], Eq. (1) is solved
on the Matsubara axis for a finite set of imaginary fre-
quencies i!n using some localized orbital representation
such as, e.g., linear muffin-tin orbitals (LMTOs) �k

� for
the eigenvectors  rkj!:

 rkj! �
X

�

Akj!
� �k

�; (3)

which substitutes the differential Eq. (1) by a matrix
eigenvalue problem.

Once the local Green function is constructed, the new
charge density, the effective potential, and the local
self-energy are computed. The latter is found by solving
the Anderson impurity model using a suitable many-
body technique. The entire formulation requires self-
consistency which delivers the total energy of the
interacting electronic system.

The dynamical matrix is the second order derivative of
the energy. As with the ordinary density functional for-
mulation of the problem [14], we deal with the first-order
corrections to the charge density, ��; as well as the first-
order correction to the local Green function �ĜG�!� which
should be considered as two independent variables in the
functional of the dynamical matrix. To find the ex-
tremum, a set of the linearized Dyson equations has to
be solved self-consistently:

��r2 � Veff��̂��!� � �̂�dc � �kj!�� rkj!

� ��Veff � ��̂��!� � ��̂�dc� rkj! � 0; (4)

which leads us to consider the first-order changes in the
effective potential �Veff and in the local self-energy
operator ��̂��!�. Here and in the following we will as-
sume that the phonon wave vector of the perturbation q is
different from zero, and, therefore, the first-order changes
in the eigenvalues ��kj! drop out. The quantities �Veff

and ��̂��!� are the functionals of �� and �ĜG�!� and
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should be found self-consistently. In particular, the
change in the self-energy ��̂��!� assumes the develop-
ment of solving an Anderson impurity model linearized
with respect to atomic displacements.

In practice, change in the eigenvector � kj! has to
be expanded in some basis set. Previous linear response
schemes were based on tight-binding methods [15],
plane wave pseudopotentials [3,4,16,17], linear aug-
mented plane waves [18], mixed orbitals [19], and linear
muffin-tin orbitals [20]. To build an effective computa-
tional scheme applicable for systems with localized orbi-
tals we use LMTO representation as the basis. Because of
its explicit dependence on the atomic positions, both
Hellmann-Feynman contributions and incomplete basis
set corrections appear in the expression for the dynami-
cal matrix [14]. We expand � kj! as follows:

� kj! �
X

�

f�Akj!
� �k�q

� � Akj!
� ��k

�g; (5)

where we introduced both changes in the frequency de-
pendent variational coefficients �Akj!

� as well as changes
in the basis functions ��k

�. The latter helps us to reach
convergency in the entire expression (5) with respect to
the number of the basis functions f�g fast since the con-
tribution with ��k

� takes into account all rigid move-
ments of the localized orbitals [20].

The first-order changes in the Green function can be
found as follows:

�ĜG�!� �
X

kj

� lkj! 
r
kj! �  lkj!� 

r
kj!

�kj! �!
; (6)

which should be used to evaluate the first-order change in
the charge density and the dynamical matrix itself.

We now describe our implementation of the method for
calculating the vibrational spectra in NiO and MnO. The
Neel temperatures in these materials are much lower than
their energy gaps and the phonon spectra do not depend
dramatically on magnetic ordering. Our main interest is
therefore to check the theory in the paramagnetic insu-
lating state. Antiferromagnetic phases can be explored
by using spin dependent density functionals like LSDA.
It is, for example, well known [21] that the underesti-
mated by the LSDA values of the energy gap and of the
magnetic moment can be corrected by the LSDA�U
method with U of the order of 8 eV appropriate for these
materials. The use of the LSDA�U approximation is
equivalent here to a static Hartree-Fock limit of our
full frequency resolved theory: the self-energy �̂��!�
becomes an orbital-dependent correction to the Kohn-
Sham potential Veff expressed via the density matrix of
the localized electrons, n��. Unfortunately, at the ab-
sence of long-range order, LDA necessarily converges
to the wrong metallic state. Also LSDA�U makes no
sense since it is reduced to the standard LDA. Therefore,
the genuine paramagnetic state can be recovered only by
using a frequency dependent self-energy. In the Mott
056401-2
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FIG. 1. Comparison between calculated using the present
DMFT method (filled circles) and experimental (open circles)
phonon dispersion curves for NiO.

TABLE I. Comparisons between �-point optical frequencies,
energy gap, static dielectric constants �1, �0, and Born effec-
tive charges jZ
j for NiO and for MnO using various methods
and experiments.

NiO
Method DMFT LDA LSDA LSDA� U GW Expt.

!TO, THz 12.2 8.9 10.3 12.0 � � � 11.6a

!LO, THz 17.1 8.9 11.5 17.0 � � � 17.2a

Eg, eV 3.3 0.0 0.5 3.1 3.7–5.5b 4.0– 4.3c

�1 6.9 1 35.7 7.2 � � � 5.7d

�0 13.6 1 44.5 14.4 � � � 12.5h

jZ
j 2.3 � � � 2.2 2.3 � � � 2.2h

MnO
Method DMFT LDA LSDA LSDA� U GW Expt.

!TO, THz 8.9 9.8i 8.6 9.7 � � � 7.9e

!LO, THz 15.3 9.8i 12.2 15.8 � � � 15.0e

Eg, eV 3.0 0.0 0.9 2.9 4.5f 3.6–3.8g

�1 5.7 1 10.3 5.9 � � � 5.0d

�0 16.8 1 20.7 15.7 � � � 18.0h

jZ
j 2.3 � � � 2.2 2.3 2.5f 2.2h

aReference [22]. bReference [23]. cReference [24].
dReference [25]. eReference [26]. fReference [7].
gReference [27]. hEstimated from !LO, !TO, and �1.
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insulating limit, it is well described by the Hubbard 1
approximation:

�̂��!� � �!� �d�ÎI � ĜG�1
at �!�; (7)

where we assume that the self-energy operates only be-
tween the correlated d electrons located at �d and Gat�!�
is the atomic Green function for d shell treated in our
calculation using the SU�N� symmetry. The use of the
Hubbard 1 approximation for �̂��!�, (7), assumes no self-
consistency loop over hybridization function within
DMFT. Here we fix Hubbard U for all the displacements.
As a result, the poles of the atomic Green function are
fixed and the change in the self-energy due to displace-
ments, ��̂��!�, vanishes unless q � 0. (In the latter case,
variation ��d of the level �d appears.)

We now discuss the results of our DMFT calculations
which we perform using the LMTO basis and experimen-
tal lattice parameters. Figure 1 shows phonon dispersions
for NiO along major symmetry directions. A good agree-
ment with experiment [22] can be found for both acoustic
and transverse modes. A pronounced softening of the
longitudinal optical mode along both �X and �L lines
is seen at the measured data which is in part captured by
our theoretical calculation: the agreement is somewhat
better along the �X direction while the detailed q depen-
dence of these branches shows some residual discrepan-
cies. Table I lists detailed comparisons with the
experiment of our �-point longitudinal and transverse
optical (LO and TO) frequencies. Notably, all values
of the frequencies are in good agreement with the
measurements.

We can compare the results of these calculations with
the paramagnetic LDA, as well as with the antiferromag-
netic LSDA and LSDA�U solutions. For the � point we
list these data in Table I. The paramagnetic LDA does not
reproduce the insulating behavior and therefore fails to
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predict the splitting between the LO and TO modes.
Because of metallic screening, it underestimates the
vibrations for NiO and predicts them to be unstable for
MnO. The spin resolved LSDA solution imposes the ex-
istence of long-range magnetic order and does a better job
but strongly underestimates the energy gap. As a result,
we see an apparent underestimation of the longitudinal
optical modes. The LO-TO splitting is also largely under-
estimated. The transverse optical mode at the � point is
somewhat better predicted. We also found that acoustic
modes are well predicted by the LSDA. These results can
be understood since the charge transfer between nearest
atoms to a large degree occurs for the longitudinal optical
mode only, which strongly affects the screening process
by a locally large interaction U. Shortly, when the charge
is allowed to flow into the d shell there is not enough
repulsion in LSDA resulting in mode softening. The
repulsion can be increased if we utilize the LSDA�U
method. Really, we have found that this method provides
a remarkable hardening of the longitudinal optical modes
as seen from Table I. Since the LSDA�U method is
simply the Hartree-Fock approximation to the self-
energy within our LDA� DMFT theory, we reach a
general conclusion that the DMFT based linear response
predicts lattice dynamics equally well for both the or-
dered and disordered magnetic states of these strongly
correlated oxides.

To better understand our findings we list in Table I
obtained values of the energy gap Eg and calculated
values of �1 which represent an electronic contribution
to the static dielectric constant �0 as given by the inverse
056401-3



P H Y S I C A L R E V I E W L E T T E R S week ending
7 FEBRUARY 2003VOLUME 90, NUMBER 5
element 1=��1�0; 0� of the full inverse dielectric permit-
tivity matrix in reciprocal space. Table I compares the
results of our calculations with the experiment [25]. It is
seen that the LSDA result largely overestimates the static
dielectric constants. This is partially because the calcu-
lated by the LSDA dielectric gaps, which are essentially
the charge transfer gaps in NiO and MnO, are much
smaller than the experimental ones [24,27]. Also the
direct splitting U between the lower and the upper
Hubbard d bands is wrong. As a result, the LSDA over-
estimates the screening of charge fluctuations in both d-p
and d-d channels causing the artificial softening of the
LO phonons which results in lowering the LO-TO split-
ting. The latter is well known to be directly proportional
to the Born effective charges but inversionally propor-
tional to �1.

On the other hand, our calculations with correlations
produce much better values of the static dielectric con-
stants as seen from Table I. This is found for both
the LSDA�U and the LSDA� Hubbard 1 calculations
which we interpret as good approximations to the DMFT
solutions for the ordered and disordered magnetic states.
We relate such an agreement with the fact that the direct
d-d gap is fixed by U, and the charge transfer gap comes
out better in the theory. Thus, the local screening of
charge fluctuations are treated more appropriately.

In Table I we list for comparison some available results
of the calculations based on GWapproximation [7,23]. So
far there is no general consistency in published values of
the energy gaps, and fully self-consistent implementation
of the GW is under way. It seems that the GW should
predict the gaps closer to the experiment and should have
a better description of the dielectric properties. However,
the method intrinsically misses the notion of the Hubbard
bands and would necessarily fail to describe the para-
magnetic insulating regime.

As a final result, we have extracted the values of the
Born effective charge Z
 using q ! 0 limit technique
[28] and the relationship !2

LO �!2
TO / jZ
j2=�1. Table I

shows the comparison between the theoretical and the
experimental [22,26] data. The deviation from 2 which
for binary oxides is the nominal rigid-ion value of jZ
j
indicates high electronic polarizability. All theoretical
values are close to the experimental ones. It is not clear
if the agreement for LSDA is accidental due to the error
cancellation in underestimating the splitting !2

LO �!2
TO

and overestimating �1. In this Letter, however, we em-
phasize the ability to predict not only the Born charges
but all the relevant quantities close to the experiment
which demonstrates the internal consistency of the new
DMFT method.

To summarize, we have developed a new method to
study the lattice dynamics of strongly correlated mate-
rials at arbitrary wave vector q. We were able to compute
the phonons for NiO and MnO in both para- and anti-
ferromagnetic insulating states. We found the results in
056401-4
good agreement with experiments. There are many other
challenging problems for which this approach can be
useful. Discrepancies between theory and experiment
were noticed [29] for the ferroelectric CaCu3Ti4O12.
The electron-phonon interaction in cuprate superconduc-
tors is a subject of intensive investigation. The correlation
effects can play an important role in the phonon dynam-
ics across the actinide series.
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